scholarly journals Enhancement of heat transfer in a synthetic jet actuated by piston cylinder

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110491
Author(s):  
Arun Jacob ◽  
KA Shafi ◽  
KE Reby Roy

Modern electronics demand more powerful cooling systems due to an increase in heat dissipation. The traditional cooling techniques reached their limit and the synthetic jet impingement arises as a promising method for cooling of modern electronic systems. This paper presents the experimental studies on the heat transfer characteristics of a synthetic jet. The synthetic jet is driven by a piston actuator. The effects of dimensionless parameters like the distance between the orifice and heater plate (Z/D), the ratio of stroke length to diameter of orifice ( L/D), Stokes number, and Reynolds number are discussed. The effect of orifice geometry, number of orifices are also presented. The results indicate that the Z/D and Stokes number have a significant influence on the heat transfer rate. As the Stokes number increases the heat transfer increases due to an increase in axial momentum and turbulence in the flow direction. For circular orifice and at high Z/D, the L/D ratio should be higher for better heat transfer. Rectangular orifice performs better than square and circular geometries. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressure ( Pnr) are achieved for high Stokes number and smaller areas of the orifice.

1986 ◽  
Vol 108 (4) ◽  
pp. 749-754 ◽  
Author(s):  
D. A. Nelson ◽  
E. J. Shaughnessy

The enhancement of convective heat transfer by an electric field is but one aspect of the complex thermoelectric phenomena which arise from the interaction of fluid dynamic and electric fields. Our current knowledge of this area is limited to a very few experimental studies. There has been no formal analysis of the basic coupling modes of the Navier–Stokes and Maxwell equations which are developed in the absence of any appreciable magnetic fields. Convective flows in enclosures are particularly sensitive because the limited fluid volumes, recirculation, and generally low velocities allow the relatively weak electric body force to exert a significant influence. In this work, the modes by which the Navier–Stokes equations are coupled to Maxwell’s equations of electrodynamics are reviewed. The conditions governing the most significant coupling modes (Coulombic forces, Joule heating, permittivity gradients) are then derived within the context of a first-order theory of electrohydrodynamics. Situations in which these couplings may have a profound effect on the convective heat transfer rate are postulated. The result is an organized framework for controlling the heat transfer rate in enclosures.


Author(s):  
Chyouhwu B. Huang ◽  
Hung-Shyong Chen ◽  
Szu-Ming Wu

Heat dissipation is a very important subject when dealing with industrial application especially in modern semiconductor related applications. Several techniques have been developed to solve the heat generated problem, such as heat dissipation device in IC packaging, high heat conductivity materials, heat tube, force convection, etc. Porous material is used in this study. Porous material is known to have large interior surface, therefore, with proper force convection; it can easily carry heat away. Micro porous ceramic (porous size: 490 μm) is attached to uninterruptible power supply (UPS) power chips. The increase of the heat dissipation rate improves UPS performance. Heat transfer properties comparisons for power chip with and without micro porous materials attached are studies. Also, heat transfer rate under different fan speeds (force convection) is studied. The results show that, heat transfer increases with the use of micro porous materials, the effectiveness ranges between 2–22%. Also, the heat transfer rate varies with air flow rate, the increase of heat transfer is about 4–6%. The dust effect was also performed; experimental results show that heat transfer rate will not be affected by the accumulated dust if a micro porous material is applied.


Author(s):  
Suabsakul Gururatana ◽  
Xianchang Li

Extended surfaces (fins) have been used to enhance heat transfer in many applications. In electronics cooling, fin-based heat sinks are commonly designed so that coolants (gas or liquid) are forced to pass through the narrow straight channel. To improve the overall heat sink performance, this study investigated numerically the details of heat sinks with interrupted and staggered fins cooled by forced convection. Long and narrow flow passages or channels are widely seen in heat sinks. Based on the fundamental theory of heat transfer, however, a new boundary layer can be created periodically with interrupted fins, and the entrance region can produce a very high heat transfer coefficient. The staggered fins can take advantage of the lower temperature flow from the upstream. The tradeoff is the higher pressure loss. A major challenge for heat sink design is to reduce the pressure loss while keeping the heat transfer rate high. The effect of fin shapes on the heat sink performance was also examined. Two different shapes under study are rectangular and elliptic with various gaps between the interrupted fins in the flow direction. In addition, studies were also conducted on the parametric effects of Reynolds number and gap length. It is observed that heat transfer increases with the Reynolds number due to the feature of developing boundary layer. If the same pressure drop is considered, the heat transfer rate of elliptic fins is higher than that of rectangular fins.


Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 176 ◽  
Author(s):  
Mahir Faris Abdullah ◽  
Rozli Zulkifli ◽  
Zambri Harun ◽  
Shahrir Abdullah ◽  
Wan Wan Ghopa ◽  
...  

Here, the researchers carried out an experimental analysis of the effect of the TiO2 nanosolution concentration on the heat transfer of the twin jet impingement on an aluminum plate surface. We used three different heat transfer enhancement processes. We considered the TiO2 nanosolution coat, aluminum plate heat sink, and a twin jet impingement system. We also analyzed several other parameters like the nozzle spacing, nanosolution concentration, and the nozzle-to-plate distance and noted if these parameters could increase the heat transfer rate of the twin jet impingement system on a hot aluminum surface. The researchers prepared different nanosolutions, which consisted of varying concentrations, and coated them on the metal surface. Thereafter, we carried out an X-ray diffraction (XRD) and a Field Emission Scanning Electron Microscopy (FESEM) analysis for determining the structure and the homogeneous surface coating of the nanosolutions. This article also studied the different positions of the twin jets for determining the maximal Nusselt number (Nu). The researchers analyzed all the results and noted that the flow structure of the twin impingement jets at the interference zone was the major issue affecting the increase in the heat transfer rate. The combined influence of the spacing and nanoparticle concentration affected the flow structure, and therefore the heat transfer properties, wherein the Reynolds number (1% by volume concentration) maximally affected the Nusselt number. This improved the performance of various industrial and engineering applications. Hypothesis: Nusselt number was affected by the ratio of the nanoparticle size to the surface roughness. Heat transfer characteristics could be improved if the researchers selected an appropriate impingement system and selected the optimal levels of other factors. The surface coating with the TiO2 nanosolution also positively affected the heat transfer rate.


IJOSTHE ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 7
Author(s):  
Swarnik Mehar ◽  
Pankaj Mishra

If the heat in the heat engine is not removed properly, it causes the development of the detonation and eventually reduces the efficiency of the engine, so that the heat dissipation rate of the cylinder an important and interesting task is the option. The cylinder of the engine is one of the most important automotive components, variations of high temperature and thermal loads. To cool the cylinder, the ribs are provided on the surface of the cylinder, to increase the rate of heat transfer. By a thermal analysis of the motor cylinder and the ribs that surround it, it is useful to know the heat transfer rate and the temperature distribution inside the cylinder. We know that we can increase the heat dissipation rate by increasing the surface so it is very difficult to design such a complex motor. The main objective of this project is to analyze thermal properties such as thermal directed flow, total heat flow and temperature distribution. The cooling mechanism of the air cooled engine depends mainly on the design of the cylinder head and the block ribs. The cooling fins are used to increase the heat transfer rate of the specified surface. The life and efficiency of the engine can be improved by efficient cooling. The finite element method was used using the ANSYS software as a simulation tool for analysis.


Author(s):  
Carlo Salvatore Greco ◽  
Gerardo Paolillo ◽  
Andrea Ianiro ◽  
Gennaro Cardone ◽  
Luigi de Luca

Author(s):  
L. R. Thippeswamy ◽  
Ajay Kumar Yadav

Abstract The natural circulation loop (NCL) is widely used where the safe and economic heat transfer device is desired. However, the instability associated with the regular change in fluid flow behavior due to the imbalance between friction and buoyant forces is a major disadvantage. One of the erudite solutions to overcome this is to tilt the entire loop by a certain angle, with an inherent penalty in heat transfer and pressure drop. In the present study, experimental studies have been carried out on two-phase carbon dioxide (CO2) based NCL, which has gained popularity because of its compactness and higher heat transfer rate. Pressure drop and heat transfer performance of the loop for various tilt angles (0 deg, 30 deg, and 45 deg) in different planes (XY and YZ planes) have been investigated. Methanol is used as the external fluid in cold and hot heat exchangers in order to maintain low operating temperature in the loop. Results show that the tilting of the loop causes a marginal drop in the heat transfer rate of two-phase CO2 based NCL. Hence, tilting of the loop could be a solution to instability problem without conceding the performance of the loop.


2014 ◽  
Vol 931-932 ◽  
pp. 1228-1232
Author(s):  
Pathomporn Narato ◽  
Kittinan Maliwan ◽  
Chayut Nuntadusit

The aims of this study are to investigate flow characteristics in pulse jet combustor and heat transfer characteristics of impinging jet from pulse jet combustor. The combustor is Helmholtz type which has single combustor chamber and single tailpipe. The inner diameter (D) of tailpipe was 47 mm and tailpipe length was about 16D. The effect of number of air inlets: single inlet, double inlets with 90o apart, double inlets with 180o apart and triple inlets with 90o apart on flow and heat transfer characteristics were studied. A water cooled heat flux sensor was applied to measure heat transfer rate on the surface at stagnation point. The jet-to-plate distance was varied at L=1D, 2D, 4D, 6D and 8D. Two of pressure transducers were mounted on the wall of combustion chamber and on the wall of tailpipe at 4D from tailpipe outlet to measure pressure simultaneously. It is found that the variation of pressure near the tailpipe outlet is strongly depended on air inlet configurations. The pressure variations in pulse jet combustor could be preliminary related to the temperature and velocity of jet from tailpipe and heat transfer rate on jet impingement surface.


2020 ◽  
Author(s):  
Rajat Kumar ◽  
Devendra Singh ◽  
Ajay Kumar Sharma

The Engine chamber is one of the essential engine components, that is subjected to over the top temperature differences and thermal stresses. Fins are set on the surface of the cylinder to improve the quantity of heat exchange by convection. When fuel is burned in an engine, heat is produced. Additional heat is also generated by friction between the moving parts. In air-cooled I.C engine, extended surfaces called fins are provided at the periphery of engine cylinder to increase heat transfer rate. That is why the analysis of fin is important to increase the heat transfer rate. The main of aim of this work is to study various researches done in past to improve heat transfer rate of cooling fins by changing cylinder fin geometry and material. In the present work, Experiments have been performed to discover the temperature variations inside the fins made in four kind geometries (plate Fins, Circular Pin fins, plate fins with holes, and draft Pin fins) and consistent state heat exchange examination has been studied utilizing a finite element software ANSYS to test and approve results. The temperature variations at various areas of fins models are evaluated by FEM and compared models of fins performance by heat flux and temperature variations obtained by experimentally in Analysis. The principle implemented in this project is to expand the heat dissipation rate by utilizing the wind flow. The main aim of the study is to enhance the thermal properties by shifting geometry, material, and design of fins


Sign in / Sign up

Export Citation Format

Share Document