scholarly journals An interval type-2 fuzzy logic controller design method for hydraulic actuators of a human-like robot by using improved drone squadron optimization

2019 ◽  
Vol 16 (6) ◽  
pp. 172988141989155 ◽  
Author(s):  
Haozhen Dong ◽  
Liang Gao ◽  
Pi Shen ◽  
Xinyu Li ◽  
Yan Lu ◽  
...  

Hydraulic actuator becomes an increasingly concerned driver for human-like robots. However, its dynamic performance under the control should be still further improved because hydraulic system is a typical nonlinearity system. Interval type-2 fuzzy logic controller is an advanced control method featured with high performance to deal with uncertain and nonlinear dynamics, so designing an interval type-2 fuzzy logic controller for the control of hydraulic is a feasible method. In this article, an improved drone squadron optimization-based approach is proposed to optimize interval type-2 fuzzy logic controller parameters. To verify the feasibility and priority of improved drone squadron optimization, a comparison on three different typical plants including proportional-derivative (PD) system, proportional-integral (PI) system, and PI nonlinear system between improved drone squadron optimization and other meta-heuristic algorithms is carried out. Simulation results demonstrate that improved drone squadron optimization not only gets an appropriate interval type-2 fuzzy logic controller for system control but also outperforms other popular algorithms in accuracy of performance.

Author(s):  
KARTHICK S ◽  
Dr.P. Lakshmi ◽  
DEEPA T

The Interval Type-2 Fuzzy Logic Controller (IT2FLC) for a Quadruple Tank Process (QTP) is demonstrated in this paper. Here the Interval Type-2 based Fuzzy membership function is used. The QTP is made to operate in minimum phase mode. The vertices of fuzzy membership functions are tuned with IT2FLC to minimize Integral Absolute Error. Performance of IT2FLC and Type-1 Fuzzy Logic Controller (T1FLC) are compared with decentralized PI controller, by simulation using MATLAB/Simulink. Simulation results show that satisfactory performance for both servo and regulatory responses.It has been observed that dynamic performance of IT2FLC is better than the other two controllers. Moreover, compared with the T1FLC controller, IT2FLC performs better, particularly in noisy environments.


2020 ◽  
Vol 10 (5) ◽  
pp. 6301-6308
Author(s):  
A. Bounab ◽  
A. Chaiba ◽  
S. Belkacem

In this paper, a high-performance indirect field-oriented controlled dual Induction Motor (IM) drive fed by a single inverter using type-2 fuzzy logic control will be presented. At first, the mathematical model of the IM is implemented in the d-q reference frame. Then, the speed control of the Dual Induction Motor (DIM) operating in parallel configuration with Indirect Field Oriented Control (IFOC) using PI and type-2 Fuzzy Logic Controller (T2-FLC) will be presented. For the control of this system, a DC supply and a Space Vector Pulse Width Modulation (SVPWM) voltage source inverter are introduced with constant switching frequency. Also, the performance of T2-FLC, which is based on the IFOC, is tested and compared to those achieved using the PI controller. The simulation results demonstrate that the T2-FLC is more robust, efficient, and has superior dynamic performance for traction system applications.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 303-323
Author(s):  
Amjad J Humaidi ◽  
Huda T Najem ◽  
Ayad Q Al-Dujaili ◽  
Daniel A Pereira ◽  
Ibraheem Kasim Ibraheem ◽  
...  

This paper presents control design based on an Interval Type-2 Fuzzy Logic (IT2FL) for the trajectory tracking of 3-RRR (3-Revolute-Revolute-Revolute) planar parallel robot. The design of Type-1 Fuzzy Logic Controller (T1FLC) is also considered for the purpose of comparison with the IT2FLC in terms of robustness and trajectory tracking characteristics. The scaling factors in the output and input of T1FL and IT2FL controllers play a vital role in improving the performance of the closed-loop system. However, using trial-and-error procedure for tuning these design parameters is exhaustive and hence an optimization technique is applied to achieve their optimal values and to reach an improved performance. In this study, Social Spider Optimization (SSO) algorithm is proposed as a useful tool to tune the parameters of proportional-derivative (PD) versions of both IT2FLC and T1FLC. Two scenarios, based on two square desired trajectories (with and without disturbance), have been tested to evaluate the tracking performance and robustness characteristics of proposed controllers. The effectiveness of controllers have been verified via numerical simulations based on MATLAB/SIMULINK programming software, which showed the superior of IT2FLC in terms of robustness and tracking errors.


Author(s):  
Mahamat Loutfi Imrane ◽  
Achille Melingui ◽  
Joseph Jean Baptiste Mvogo Ahanda ◽  
Fredéric Biya Motto ◽  
Rochdi Merzouki

Some autonomous navigation methods, when implemented alone, can lead to poor performance, whereas their combinations, when well thought out, can yield exceptional performances. We have demonstrated this by combining the artificial potential field and fuzzy logic methods in the framework of mobile robots’ autonomous navigation. In this article, we investigate a possible combination of three methods widely used in the autonomous navigation of mobile robots, and whose individual implementation still does not yield the expected performances. These are as follows: the artificial potential field, which is quick and easy to implement but faces local minima and robustness problems. Fuzzy logic is robust but computationally intensive. Finally, neural networks have an exceptional generalization capacity, but face data collection problems for the learning base and robustness. This article aims to exploit the advantages offered by each of these approaches to design a robust, intelligent, and computationally efficient controller. The combination of the artificial potential field and interval type-2 fuzzy logic resulted in an interval type-2 fuzzy logic controller whose advantage over the classical interval type-2 fuzzy logic controller was the small size of the rule base. However, it kept all the classical interval type-2 fuzzy logic controller characteristics, with the major disadvantage that type-reduction remains the main cause of high computation time. In this article, the type-reduction process is replaced with two layers of neural networks. The resulting controller is an interval type-2 fuzzy neural network controller with the artificial potential field controller’s outputs as auxiliary inputs. The results obtained by performing a series of experiments on a mobile platform demonstrate the proposed navigation system’s efficiency.


Author(s):  
Ade Silvia Handayani ◽  
Nyayu Latifah Husni ◽  
Siti Nurmaini ◽  
Irsyadi Yani

Navigation is one of the typical problem domains occurred in studying swarm robot. This task needs a special ability in avoiding obstacles.  This research presents the navigation techniques using type 1 fuzzy logic and interval type 2 fuzzy logic. A comparison of those two fuzzy logic performances in controlling swarm robot as tools for complex problem modeling, especially for path navigation is presented in this paper.  Each hierarchical of fuzzy logic shows its advantages and disadvantages.  For testing the robustness of type-1 fuzzy logic and interval type-2 fuzzy logic algorithms, 3 robots for the real swarm robot experiment are used.  Each is equipped with one compass sensor, three distance sensors, and one X-Bee communication module.  The experimental results show that type-2 fuzzy logic has better performance than type-1 fuzzy logic.


Sign in / Sign up

Export Citation Format

Share Document