Modeling and control of a novel facade cleaning robot with four-ducted fan drive

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142098572
Author(s):  
Xiao-Peng Li ◽  
Xin Wang ◽  
Bin Feng

With the development of modern cities, the demand for cleaning glass curtain walls in urban skyscrapers is increasing, and therefore, many researches on facade cleaning robots have been carried out in the past few decades. In this article, a novel type of facade cleaning robot based on four-ducted fan is proposed. To improve the load capacity of the robot, the lifting and horizontal movement are, respectively, supported by an independent lifting mechanism and a lateral movement mechanism. Unlike the previous passive and active suction, the powerful suction power of the robot is provided by the four-ducted fan. Meanwhile, the obstacle-climbing force is caused by the forward of the four-ducted fan that improves the crossing obstacle ability. In addition, an incremental sliding mode algorithm is applied for controlling the posture when the robot crosses obstacles, which can ensure the stable performance of the cleaning robot under disturbance. Some simulations and experiments are conducted and the results demonstrate the effectiveness and robustness of the designed facade cleaning robot.

2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hind Elaimani ◽  
Ahmed Essadki ◽  
Noureddine Elmouhi ◽  
Rachid Chakib

The modeling and control of a wind energy conversion system based on the Doubly Fed Induction Generator DFIG is the discussed theme in this paper. The purpose of this system was to control active and reactive power converted; this control is ensured thanks to the control of the two converters. The proposed control strategies are controlled by PI regulators and the sliding mode technique. In the present work a comparison of the robustness of the 2 controls of the grid side converter (GSC) during a voltage dip is shown. The simulation is carried out using the Matlab/Simulink software with a 300 kW generator.


Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Author(s):  
JIAN-XIN XU ◽  
XUE-LEI NIU ◽  
QIN-YUAN REN

In this paper, the modeling and control design of a biomimetic robotic fish is presented. The Anguilliform robotic fish consists of N links and N - 1 joints, and the driving forces are the torques applied to the joints. Considering kinematic constraints, Lagrangian formulation is used to obtain the dynamics of the fish model. The computed torque control method is applied first, which can provide satisfactory tracking responses for fish joints. Since this robotic fish is essentially an underactuated system, the reference trajectories for the orientation of the N links are planned in such a way that, at a neighborhood of the equilibrium point, the tracking task of N angles can be achieved by using N - 1 joint torques. To deal with parameter uncertainties that exist in the actual environment, sliding mode control is adopted. Considering feasibility and complexity issues, a simplified sliding mode control algorithm is given. A four-link robotic fish is modeled and simulated, and the results validate the effectiveness of reference planning and the proposed controllers.


Author(s):  
Parham Pournazari ◽  
Pradeepkumar Ashok ◽  
Eric van Oort

This paper presents a robust control algorithm for automatic hoisting of a drill string in oil and gas drilling operations. We demonstrate an iterative scheme for trajectory design and present a lumped dynamic model of the hoisting system. The trajectory is used along with the dynamic model to design a hybrid sliding mode and gain scheduled PI controller to deal with the frictional nonlinearities of the system. The simulation results demonstrate the feasibility of this approach in optimally performing the pipe hoisting task.


Author(s):  
Witoon Panusittikorn ◽  
Paul I. Ro

A magnetostrictive actuator offers a long mechanical strain output in a broad bandwidth at a cost of a highly nonlinear magnetic hysteresis. Full utilization of this actuator in precision manufacturing requires a feedback loop as well as an advanced control scheme. A robust control scheme using sliding mode control with a variable switching gain was tailored to the nonlinear transducer. Nominal feedforward current controller that drives the magnetostriction was based on the inverse anhysteresis model. An additional switching gain based on the Lyapunov stability condition is implemented to restrain uncertainties. Compared to a traditional closed-loop control design, the proposed algorithm experimentally showed a greatly enhanced performance.


Author(s):  
Hualong Xie ◽  
Yao Xie ◽  
Fei Li

The biped robot with heterogeneous legs (BRHL) greatly facilitates the development of intelligent lower-limb prosthesis (ILLP). In the BRHL, the remaining leg of the amputee is simulated by an artificial leg, which provides the bionic leg with the precise gait following trajectory. Therefore, the artificial leg must closely mimic the features of the human leg. After analyzing the motion mechanism of the human knee, this paper designs a four-link bionic knee in light of the coexistence of rolling and sliding between the femur, the meniscus and the tibia. Drawing on the driving mechanism of leg muscles, two pneumatic artificial muscles (PAMs) were adopted to serve as the extensor and flexor muscles on the thigh. The two PAMs move in opposite direction, driving the knee motions in the artificial leg. To overcome the complexity of traditional PAM modelling methods, the author set up a PAM feature test platform to disclose the features of the PAMs, and built static and dynamic nonlinear mathematical models of the PAMs based on the test data. Next, a proportional-integral-derivative (PID) closed loop controller and sliding mode controller was designed for the bionic knee, referring to the kinetics equation of the knee. Through experimental simulation, it is confirmed that the proposed controller can accurately control the position of the four-link bionic knee, and that the designed bionic knee and PAM driving mode are both correct.


Author(s):  
A. Chriette ◽  
F. Plestan ◽  
M. Odelga

This paper presents a novel autopilot for a 3D helicopter. From desired trajectories defined by the user for elevation and travel angles, the autopilot is computing the desired trajectory of the pitch angle. Furthermore, the autopilot allows to decouple the system and to define “virtual” inputs in order to separately design controllers for each attitude angle. Travel and elevation controllers are based on adaptive version of super-twisting algorithm: this class of controllers keeps the robustness feature of sliding mode while reducing the well-known drawback of such control approach, the chattering, thanks to the online adaptation of the controller gain.


Sign in / Sign up

Export Citation Format

Share Document