scholarly journals Urinary nitric oxide metabolites and individual blood pressure progression to overt hypertension

2011 ◽  
Vol 18 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Marcus Baumann ◽  
Christoph Schmaderer ◽  
Tatiana Kuznetsova ◽  
Roger Bartholome ◽  
Jos FM Smits ◽  
...  
2020 ◽  
Vol 319 (2) ◽  
pp. R211-R222
Author(s):  
Samarmar Chacaroun ◽  
Anna Borowik ◽  
Stephane Doutreleau ◽  
Elise Belaidi ◽  
Bernard Wuyam ◽  
...  

Although severe intermittent hypoxia (IH) is well known to induce deleterious cardiometabolic consequences, moderate IH may induce positive effects in obese individuals. The present study aimed to evaluate the effect of two hypoxic conditioning programs on cardiovascular and metabolic health status of overweight or obese individuals. In this randomized single-blind controlled study, 35 subjects (54 ± 9.3 yr, 31.7 ± 3.5 kg/m2) were randomized into three 8-wk interventions (three 1-h sessions per week): sustained hypoxia (SH), arterial oxygen saturation ([Formula: see text]) = 75%; IH, 5 min [Formula: see text] = 75% – 3 min normoxia; normoxia. Ventilation, heart rate, blood pressure, and tissue oxygenation were measured during the first and last hypoxic conditioning sessions. Vascular function, blood glucose and insulin, lipid profile, nitric oxide metabolites, and oxidative stress were evaluated before and after the interventions. Both SH and IH increased ventilation in hypoxia (+1.8 ± 2.1 and +2.3 ± 3.6 L/min, respectively; P < 0.05) and reduced normoxic diastolic blood pressure (−12 ± 15 and −13 ± 10 mmHg, respectively; P < 0.05), whereas changes in normoxic systolic blood pressure were not significant (+3 ± 9 and −6 ± 13 mmHg, respectively; P > 0.05). IH only reduced heart rate variability (e.g., root-mean-square difference of successive normal R-R intervals in normoxia −21 ± 35%; P < 0.05). Both SH and IH induced no significant change in body mass index, vascular function, blood glucose, insulin and lipid profile, nitric oxide metabolites, or oxidative stress, except for an increase in superoxide dismutase activity following SH. This study indicates that passive hypoxic conditioning in obese individuals induces some positive cardiovascular and respiratory improvements despite no change in anthropometric data and even a reduction in heart rate variability during IH exposure.


2020 ◽  
Vol 7 ◽  
Author(s):  
Olga I. Parshukova ◽  
Nina G. Varlamova ◽  
Evgeny R. Bojko

The purpose of this study is to assess the production of nitric oxide in professional cross-country skiers with normotensive and hypertensive responses to physical activity at maximum load. The observation group included professional cross-country skiers (22.2 ± 7.1 years, = 107) who were current members of the national team of the Komi Republic. All the examined athletes performed the exercise test on a cycle ergometer “until exhaustion.” The following parameters were determined for each participant while they were sitting at rest, while at their anaerobic threshold level, during peak load, and during the recovery period (5th min): systolic blood pressure, diastolic blood pressure, heart rate, and the level of stable nitric oxide metabolites (nitrites, nitrates) in capillary blood samples. According to the blood pressure results, the cross-country skiers were divided into two groups. Group I included athletes with a normotensive response to stress. Group II was composed of individuals with a hypertensive response to stress. During the performance of the test “until exhaustion,” a significant (p &lt; 0.05) increase in the amount of stable metabolites of nitric oxide was observed in the group of athletes with a normotensive response to the load compared with the group with a hypertensive response to the load. In athletes with a normotensive reaction to the load during exercise at maximum load and in the early recovery period, nitrate was prioritized in the regulation of vascular tone. The exercise test on a cycle ergometer “until exhaustion,” combined with the assessment of the levels of stable nitric oxide metabolites in plasma, can be considered a test for the early diagnosis of endothelial dysfunction in professional athletes.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 169 ◽  
Author(s):  
Mikhail Korokin ◽  
Oleg Gudyrev ◽  
Vladimir Gureev ◽  
Liliya Korokina ◽  
Anna Peresypkina ◽  
...  

Currently, there is no doubt surrounding a theory that the cardiotropic effects of sex hormones can be due to their direct effect on the cardiovascular system. In recent years, interest in the study of steroid glycosides has increased. We studied the effects of furostanol glycosides (protodioscin and deltozid) from the cell culture of the Dioscorea deltoidea (laboratory code DM-05) on the physiological and biochemical parameters of vascular endothelial function in hypoestrogen-induced endothelial dysfunction after bilateral ovariectomy. It was shown that the use of DM-05 at a dose of 1 mg/kg makes it possible to prevent the development of arterial hypertension (the level of systolic blood pressure (SBP) decreases by 9.7% (p < 0.05) and diastolic blood pressure (DBP) by 8.2%), to achieve a decrease in the coefficient of endothelial dysfunction by 1.75 times against the background of a hypoestrogenic state. With DM-05, an increase in the concentration of stable nitric oxide metabolites (NOx) by 45.6% (p < 0.05) and an increase in mRNA endothelial nitric oxide synthase (eNOS) expression by 34.8% (p < 0.05) was established, which indicates a positive effect of furostanol glycosides on the metabolism of nitric oxide after ovariectomy. Positive dynamics in the histological structure of the heart and the abdominal aorta indicate the pronounced endothelio- and atheroprotective effects of DM-05.


2020 ◽  
Vol 52 (7S) ◽  
pp. 893-893
Author(s):  
Chris Easton ◽  
Luke Liddle ◽  
Christopher Monaghan ◽  
Mia C. Burleigh ◽  
Katarzyna Baczynska ◽  
...  

Author(s):  
Francesca Leo ◽  
Tatsiana Suvorava ◽  
Sophia K. Heuser ◽  
Junjie Li ◽  
Anthea LoBue ◽  
...  

Background: Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) via endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of red cell eNOS compared to EC eNOS for vascular hemodynamics and NO metabolism. Methods: We generated tissue-specific "loss-" and "gain-of-function" models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created two founder lines carrying a floxed eNOS (eNOS flox/flox ) for Cre-inducible knock out (KO), as well as gene construct with an inactivated floxed/inverted exon (eNOS inv/inv ) for a Cre-inducible knock in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or endothelial cells (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and NO metabolism were compared ex vivo and in vivo . Results: The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation (FMD), and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or FMD but were hypertensive. Treatment with the NOS inhibitor L-NAME further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. While both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs as compared to EC eNOS KOs. Crucially, reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOS inv/inv mice, while the levels of bound NO were restored only in RBC eNOS KI mice. Conclusions: These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.


2017 ◽  
Vol 2 (2) ◽  
pp. 34
Author(s):  
TA Popova ◽  
II Prokofiev ◽  
IS Mokrousov ◽  
Valentina Perfilova ◽  
AV Borisov ◽  
...  

Introduction: To study the effects of glufimet, a new derivative of glutamic acid, and phenibut, a derivative of γ-aminobutyric acid (GABA), on cardiac and cerebral mitochondria and endothelial functions in animals following exposure to stress and inducible nitric oxide synthase (iNOS) inhibition. Methods: Rats suspended by their dorsal cervical skin fold for 24 hours served as the immobilization and pain stress model. Arterial blood pressure was determined using a non-invasive blood pressure monitor. Mitochondrial fraction of heart and brain homogenates were isolated by differential centrifugation and analysed for mitochondrial respiration intensity, lipid peroxidation (LPO) and antioxidant enzyme activity using polarographic method. The concentrations of nitric oxide (NO) terminal metabolites were measured using Griess reagent. Hemostasis indices were evaluated. Platelet aggregation was estimated using modified version of the Born method described by Gabbasov et al., 1989. Results: The present study demonstrated that stress leads to an elevated concentration of NO terminal metabolites and LPO products, decreased activity of antioxidant enzymes, reduced mitochondrial respiratory function, and endothelial dysfunction. Inhibition of iNOS by aminoguanidine had a protective effect. Phenibut and glufimet inhibited a rise in stress-induced nitric oxide production. This resulted in enhanced coupling of substrate peroxidation and ATP synthesis. The reduced LPO processes caused by glufimet and phenibut normalized the endothelial function which was proved by the absence of average daily blood pressure (BP) elevation episodes and a significant increase in platelet aggregation level. Conclusion: Glufimet and phenibut restrict the harmful effects of stress on the heart and brain possibly by modulating iNOS activity.


Sign in / Sign up

Export Citation Format

Share Document