Buildings with environmental quality management: Part 1: Designing multifunctional construction materials

2017 ◽  
Vol 41 (3) ◽  
pp. 193-208 ◽  
Author(s):  
Mark Bomberg ◽  
Marcin Furtak ◽  
David Yarbrough

The quest for a sustainable built environment has resulted in dramatic changes in the process of residential construction. The new concepts of an integrated design team, building information modeling, commissioning of the building enclosure, and passive house standards have reached maturity. Global work on development of new construction materials has not changed, but their evaluation is not the same as in the past when each material was considered on its own merits. Today, we look at the performance of a building as a system and on the material as a contributor to this system. The series of white papers—a research overview in building physics undertaken in European and North American researchers—is to provide understanding of the process of design and construction for sustainable built environment that involves harmony between different aspects of the environment, society, and economy. Yet, the building physics is changing. It merges with building science in the quest of predicting building performance, it merges concepts of passive houses with solar engineering and integrates building shell with mechanical services, but is still missing an overall vision. Physics does not tell us how to integrate people with their environment. The authors propose a new term buildings with environmental quality management because the vision of the building design must be re-directed toward people. In doing so, the building physics will automatically include durability of the shell, energy efficiency, and carbon emission and aspects such as individual ventilation and indoor climate control. This article, which is part 1 of a series, deals with materials, and other issues will be discussed in following papers.

Author(s):  
Wim Zeiler ◽  
Gert Boxem ◽  
Rinus van Houten ◽  
Joep van der Velden ◽  
Willem Wortel ◽  
...  

In Europe comfort in buildings needs 40% of the total energy. With effects of Global warming becoming more and more apparent there is a need to reduce this energy demand by comfort within the built environment. In comfort control strategy there is an exciting development based on inclusive design: the user’s preferences and their behaviour have become central in the building services control strategy. Synergy between end-user and building is the ultimate in the intelligent comfort control concept. This new comfort control technology is based on the use of agent technology and can further reduce energy consumption of buildings while at the same time improve individual comfort. The TU/e (Technische Universiteit Eindhoven) together with Kropman and ECN (Energy research Centre Netherlands) work together in the research for user based preference indoor climate control technology. Central in this approach is the user focus of the whole building design process which makes it possible to reduce energy consumption by tuning demand and supply of the energy needed to fulfill the comfort demand of the occupants building.


2017 ◽  
Vol 134 ◽  
pp. 518-527 ◽  
Author(s):  
Francesca Stazi ◽  
Benedetta Gregorini ◽  
Andrea Gianangeli ◽  
Gabriele Bernardini ◽  
Enrico Quagliarini

Author(s):  
Daniel Forgues ◽  
Sheryl Staub-French ◽  
Leila M. Farah

Drastic changes are occurring in the construction industry. Building Information Modeling (BIM) processes and technologies, and new Integrated Project Delivery (IPD) approaches are transforming the way buildings are planned, designed, built and operated. With the needs for new skills to cope with these accelerating changes, architecture, engineering and construction (AEC) associations in the United States are working with universities to reengineer teaching programs, integrating architecture training within an engineering and construction curriculum. Leading universities are already developing new programs, such as BIM studio courses, and promoting new ways to teach practice knowledge within design laboratories.These changes are also starting to occur in the Canadian industry. Some large governmental bodies are starting to request that their projects are designed and built using BIM. Canadian universities must respond to these changing requirements to prepare future architects, engineers, and construction managers for these new challenges and emerging industry needs. This paper provides examples for how to bridge this gap by bringing practice knowledge and research to the classroom. First, it synthesizes the impact of BIM and IPD on engineering practices in Canada. Second, it describes curriculum development undertaken between a school of architecture and two engineering departments for the development of multidisciplinary design studios to teach integrated design and BIM. Case studies are set in urban contexts and include the development of new buildings as well as refurbishment proposals for an industrial obsolete landmark. Finally, learning from this teaching and research experience, it raises questions and issues regarding our readiness to cope with this paradigm shift.


2019 ◽  
Vol 13 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Mathilde Landgren ◽  
Signe Skovmand Jakobsen ◽  
Birthe Wohlenberg ◽  
Lotte Bjerregaard Jensen

Purpose In recent decades there has been a focus on reducing the overall emissions from the built environment, which increases the complexity of the building design process. More specialized knowledge, a greater common understanding and more cooperation between the stakeholders are required. Interdisciplinary design teams need simple and intuitive means of communication. Architects and engineers are starting to increase their focus on improving interdisciplinary communication, but it is often unclear how to do so. The purpose of this paper is to define the impact of visually communicating engineering knowledge to architects in an interdisciplinary design team and to define how quantifying architectural design decisions have an impact during the early phases of sustainable building design. Design/methodology/approach This work is based on a study of extensive project materials consisting of presentations, reports, simulation results and case studies. The material is made available by one of the largest European Engineering Consultancies and by a large architectural office in the field of sustainable architecture in Denmark. The project material is used for mapping communication concepts from practice. Findings It is demonstrated that visual communication by engineers increases the level of technical knowledge in the design decisions made by architects. This is essential in order to reach the goal of designing buildings with low environmental impact. Conversely, quantification of architectural quality improved the engineer’s acceptance of the architects’ proposals. Originality/value This paper produces new knowledge through the case study processes performed. The main points are presented as clearly as possible; however, it should be stressed that it is only the top of the iceberg. In all, 17 extensive case studies design processes were performed with various design teams by the 3 authors of the paper Mathilde, Birthe and Signe. The companies that provided the framework for the cases are leading in Europe within sustainability in the built environment, and in the case of Sweco also in regards to size (number of employees). Data are thus first hand and developed by the researchers and authors of this paper, with explicit consent from the industry partners involved as well as assoc. Professor Lotte B. Jensen Technical University of Denmark (DTU). This material is in the DTU servers and is in the PhD dissertation by Mathilde Landgren (successful defence was in January 2019). The observations and reflection is presented in selected significant case examples. The methods are descriped in detail, and if further information on method is required a more in depth description is found in Mathilde Landgrens PhD Dissertation. There is a lack in existing literature of the effect of visualisation in interdisciplinary design teams and though the literature (e.g. guidelines) of integrated design is extensive, there is not much published on this essential part of an integrated design process.


2020 ◽  
Vol 25 ◽  
pp. 1-40 ◽  
Author(s):  
Yun-Tsui Chang ◽  
Shang-Hsien Hsieh

The strength of Building Information Modeling (BIM) in achieving sustainable buildings is well recognized by the global construction industry. However, current understanding of the state-of-the-art green BIM research is still limited. In particular, a focus study on how BIM contribute to green building design through building performance analysis (BPA) is not available. This paper aims to provide systematic and comprehensive insights on current trends and future potentials of green BIM research by analyzing the existing literature with their research features (i.e. research backgrounds, goals, methods and outputs). In total, 80 publications have been collected, analyzed and discussed. The results show that among ten main BPA types, energy & thermal analysis, green building rating analysis, and cost and benefit analysis are the most studied. However, wind & ventilation analysis, acoustic analysis, and water efficiency analysis receive little attention. Moreover, more research focusing on integrated design analysis should be carried out for optimal design outcome. In addition, most of the collected literature research on the capability of data integration and analysis of green BIM tools, while their capability of visualization and documentation has limited examination. Furthermore, most researchers utilized one main software package while utilization of information exchange formats (IEF) is limited. To increase interoperability of green BIM tools, how different BIM authoring tools and IEFs can be utilized for BPA requires further investigation.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 388
Author(s):  
Faisal Aldebei ◽  
Mihály Dombi

Materials are continuously accumulating in the human-built environment since massive amounts of materials are required for building, developing, and maintaining cities. At the end of their life cycles, these materials are considered valuable sources of secondary materials. The increasing construction and demolition waste released from aging stock each year make up the heaviest, most voluminous waste outflow, presenting challenges and opportunities. These material stocks should be utilized and exploited since the reuse and recycling of construction materials would positively impact the natural environment and resource efficiency, leading to sustainable cities within a grander scheme of a circular economy. The exploitation of material stock is known as urban mining. In order to make these materials accessible for future mining, material quantities need to be estimated and extrapolated to regional levels. This demanding task requires a vast knowledge of the existing building stock, which can only be obtained through labor-intensive, time-consuming methodologies or new technologies, such as building information modeling (BIM), geographic information systems (GISs), artificial intelligence (AI), and machine learning. This review paper gives a general overview of the literature body and tracks the evolution of this research field.


2019 ◽  
Vol 9 (16) ◽  
pp. 3303 ◽  
Author(s):  
Ali Youssef ◽  
Ahmed Youssef Ali Amer ◽  
Nicolás Caballero ◽  
Jean-Marie Aerts

Thermal comfort and sensation are important aspects of building design and indoor climate control, as modern man spends most of the day indoors. Conventional indoor climate design and control approaches are based on static thermal comfort/sensation models that view the building occupants as passive recipients of their thermal environment. To overcome the disadvantages of static models, adaptive thermal comfort models aim to provide opportunity for personalized climate control and thermal comfort enhancement. Recent advances in wearable technologies contributed to new possibilities in controlling and monitoring health conditions and human wellbeing in daily life. The generated streaming data generated from wearable sensors are providing a unique opportunity to develop a real-time monitor of an individual’s thermal state. The main goal of this work is to introduce a personalized adaptive model to predict individual’s thermal sensation based on non-intrusive and easily measured variables, which could be obtained from already available wearable sensors. In this paper, a personalized classification model for individual thermal sensation with a reduced-dimension input-space, including 12 features extracted from easily measured variables, which are obtained from wearable sensors, was developed using least-squares support vector machine algorithm. The developed classification model predicted the individual’s thermal sensation with an overall average accuracy of 86%. Additionally, we introduced the main framework of streaming algorithm for personalized classification model to predict an individual’s thermal sensation based on streaming data obtained from wearable sensors.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012140
Author(s):  
Zeinab Khorasani zadeh ◽  
Mohamed M. Ouf

Abstract Occupant-centric control (OCC) strategies represent a novel approach for indoor climate control in which occupancy patterns and occupant preferences are embedded within control sequences. They aim to improve both occupant comfort and energy efficiency by learning and predicting occupant behaviour, then optimizing building operations accordingly. Previous studies estimate that OCC can increase energy savings by up to 60% while improving occupant comfort. However, their performance is subjected to several factors, including uncertainty due to occupant behaviour, OCC configurational settings, as well as building design parameters. To this end, testing OCCs and adjusting their configurational settings are critical to ensure optimal performance. Furthermore, identifying building design alternatives that can optimize such performance given different occupant preferences is an important step that cannot be investigated during field implementations of OCC due to logistical constraints. This paper presents a framework to optimize OCC performance in a simulation environment, which entails coupling synthetic occupant behaviour models with OCCs that learn their preferences. The genetic algorithm for optimization is then used to identify the configurational settings and design parameters that minimize energy consumption under three different occupant scenarios. To demonstrate the proposed framework, three OCCs were implemented in the building simulation program, EnergyPlus, and executed through a Python package, EPPY to optimize OCC configurational settings and design parameters. Results revealed significant improvement of OCC performance under the identified optimal configurational settings and design parameters for each of the investigated occupant scenarios. This approach would improve OCC performance in actual buildings and avoid discomfort issues that arise during the initial implementation phases.


Sign in / Sign up

Export Citation Format

Share Document