scholarly journals Synthesis, cytotoxicity, and molecular docking of methylated (–)-epigallocatechin-3-gallate-4β-triazolopodophyllotoxin derivatives as novel antitumor agents

2021 ◽  
pp. 174751982110273
Author(s):  
Cheng-Ting Zi ◽  
Ze-Hao Wang ◽  
Jing Shi ◽  
Bo-Ya Shi ◽  
Ning Zhang ◽  
...  

A series of novel methylated (–)-epigallocatechin-3-gallate-4β-triazolopodophyllotoxin derivatives is synthesized by utilizing the click reaction. Evaluation of their cytotoxicity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW480) using the MTT assay shows that most of these compounds exhibit weak cytotoxicity. It is observed that compound 12 shows the highest activity against A-549 cells with an IC50 value of 10.27 ± 0.90 μM. Molecular docking results suggested that this compound 12 has a higher binding affinity for epidermal growth factor receptor than for tubulin. Our findings support the utility of compound 12 as a novel compound for the further development of anticancer agents.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaseen A. Al-Soud ◽  
Ala’a H. Al-Ahmad ◽  
Luay Abu-Qatouseh ◽  
Amneh Shtaiwi ◽  
Kafa’ A. S. Alhelal ◽  
...  

Abstract New piperazine-tagged imidazole derivatives were synthesized via reaction of 1-alkyl/aryl-5-bromo-2-alkyl-4-nitro-1H-imidazoles 1–3 with piperazine nucleophiles. Nine selected compounds were assessed for their antiproliferative inhibition potency against five human cancer cell lines (MCF-7, PC3, Du145, HepG2 and Dermal/Fibroblast). Compounds 7 and 10 are the most potent anticancer agents on HepG2 cell line with IC50 values of (5.6 ± 0.5 µm) and (29.6 ± 7.6 µm) respectively, and on MCF-7 with IC50 values of (32.1 ± 5.6 µm) and (46.2 ± 8.2 µm) respectively. The molecular docking of compounds 7 and 10 has been studied, and the results reveal that the newly designed piperazine-tagged imidazole derivatives bind to the hydrophobic pocket and polar contact with high affinity.


2013 ◽  
Vol 91 (8) ◽  
pp. 741-754 ◽  
Author(s):  
Karam Chand ◽  
Amir Nasrolahi Shirazi ◽  
Preeti Yadav ◽  
Rakesh K. Tiwari ◽  
Meena Kumari ◽  
...  

A series of 6- and 8-cinnamoylchromen-2-one and dihydropyranochromen-2-one derivatives were synthesized and their antiproliferative activities were evaluated against three human cancer cell lines, i.e., ovarian adenocarcinoma (SK-OV-3), leukemia (CCRF-CEM), and breast carcinoma (MCF-7). In general, 8-cinnamoylchromen-2-one derivatives were found to have higher antiproliferative activity against the cancer cells when compared with 6-cinnamoyl analogues. Among all of the hybrid chromen-2-one − chalcone/flavanone compounds, a 7-hydroxy-8-cinnamoylchromen-2-one derivative 35 was found to be consistently active against all the cancer cell lines and inhibited the cell proliferation of SK-OV-3, CCRF-CEM, and MCF-7 by 63%, 50%, and 43%, respectively, at a concentration of 50 μmol/L after 72 h of incubation. This compound also exhibited the highest Src kinase inhibition (IC50 = 14.5 μmol/L). Structure−activity relationship studies provided insights for designing the next generation of chromen-2-one − chalcone hybrid prototypes and the development of new leads as anticancer agents and (or) Src kinase inhibitors.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1066 ◽  
Author(s):  
Mohamed El-Naggar ◽  
Hanan A. Sallam ◽  
Safaa S. Shaban ◽  
Salwa S. Abdel-Wahab ◽  
Abd El-Galil E. Amr ◽  
...  

A new series of 5-(3,5-dinitrophenyl)-1,3,4-thiadiazole derivatives were prepared and evaluated for their in vitro antimicrobial, antitumor, and DHFR inhibition activity. Compounds 9, 10, 13, and 16 showed strong and broad-spectrum antimicrobial activity comparable to Amoxicillin and Fluconazole as positive antibiotic and antifungal controls, respectively. Compounds 6, 14, and 15 exhibited antitumor activity against four human cancer cell lines, CCRF-CEM leukemia, HCT-15 colon, PC-3 prostate, and UACC-257 melanoma cell lines using Doxorubicin as a reference drug. Compounds 10, 13, 14, and 15 proved to be the most active DHFR inhibitors with an IC50 range of 0.04 ± 0.82–1.00 ± 0.85 µM, in comparison with Methotrexate (IC50 = 0.14 ± 1.38 µM). The highly potent DHFR inhibitors shared a similar molecular docking mode and made a critical hydrogen bond and arene‒arene interactions via Ser59 and Phe31 amino acid residues, respectively.


2021 ◽  
Vol 68 (3) ◽  
pp. 604-616
Author(s):  
Amira E. M. Abdallah ◽  
Rafat M. Mohareb ◽  
Maher H. E. Helal ◽  
Germeen J. Mofeed

Many novel thiazole derivatives were designed and synthesized using 4-phenylthiazol-2-amine. The reactivity of the latter compound toward different chemical reagents was studied. The structure of the newly synthesized compounds was established based on elemental analysis and spectral data. Furthermore, twenty compounds of the synthesized systems were selected and evaluated in (μM) as significant anticancer agents towards three human cancer cell lines [MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), and SF-268 (CNS cancer)] and normal fibroblasts human cell line (WI-38). The results showed that compounds 9 and 14a displayed higher effeciency than the reference doxorubicin.


2018 ◽  
Vol 19 (9) ◽  
pp. 2552 ◽  
Author(s):  
Malose Mphahlele ◽  
Marole Maluleka ◽  
Nishal Parbhoo ◽  
Sibusiso Malindisa

A series of 2-arylbenzo[c]furan-chalcone hybrids 3a–y have been synthesized and evaluated for antiproliferative effects against the human breast cancer (MCF-7) cell line and for its potential to induce apoptosis and also to inhibit tubulin polymerization and/or epidermal growth factor receptor-tyrosine kinase (EGFR-TK) phosphorylation. Most of these compounds exhibited moderate to significant antigrowth effects in vitro against the MCF-7 cell line when compared to the reference standard actinomycin D. The capabilities of the most cytotoxic benzofuran-chalcone hybrids 3b and 3i, to induce apoptosis, have been evaluated by Annexin V-Cy3 SYTOX staining and caspase-3 activation. The experimental and molecular docking results suggest that the title compounds have the potential to exhibit inhibitory effects against tubulin polymerization and epidermal growth factor receptor tyrosine kinase (EGFR-TK) phosphorylation. The modeled structures of representative compounds displayed hydrophobic interactions as well as hydrogen and/or halogen bonding with the protein residues. These interactions are probably responsible for the observed increased binding affinity for the two receptors and their significant antigrowth effect against the MCF-7 cell line.


2019 ◽  
Vol 16 (7) ◽  
pp. 617-630
Author(s):  
Yi-Cong Wu ◽  
Xin-Yue Ren ◽  
Guo-Wu Rao

The malignant neoplasm, which is recognized as cancer, is a serious threat to human health and frequently-occurring disease. Diphenylurea, an important link structure in the design of active substance for treating cancer due to its near-perfect binding with certain acceptors, has demonstrated many activities against several human cancer cell lines. Various novel compounds with diphenyl urea as anticancer agents were constructed with the successful development of sorafenib. Diphenylurea is utilized to treat cancer by inhibiting cell signaling transduction, such as RAS-RAFMEK- ERK signaling pathway and PI3K-Akt-mTOR pathway. In addition, this structure inhibits tumor cell growth by inhibiting receptor tyrosine kinases multiply, such as Vascular Endothelial Growth Factor Receptors (VEGFRs), Platelet-Derived Growth Factor Receptors (PDGFRs), Epidermal Growth Factor Receptors (EGFRs). It regulates the pH value in cells by inhibiting CAIX/XII and to achieve cancer therapeutic effect. Besides, the diphenyl urea structure is applied to the synthesis of reagents like Aurora kinases inhibitors and HDAC inhibitors that affect cell division and differentiation to treat cancer. To reach the goal of treating tumor, this structure is also used as a DNA-directed alkylating agent by affecting the expression of genes. An application of the most representative diphenyl urea derivatives as antitumor agents is summarized in this review, focusing on their mechanisms bound to the targets. Meanwhile, the progress of researches on methods of synthesizing diphenyl urea derivatives is provided.


2021 ◽  
Author(s):  
Reda Yousef ◽  
Helmy Sakr ◽  
Ibrahim Eissa ◽  
Ahmed Mehany ◽  
Ahmed Metwaly ◽  
...  

Eleven new quinoxaline derivatives were designed and synthesized as modified VEGFR-2 inhibitors of our previous work. The synthesized compounds were tested against three human cancer cell lines (HepG-2, MCF-7 and...


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986066
Author(s):  
Cheng-Ting Zi ◽  
Liu Yang ◽  
Bang-Lei Zhang ◽  
Yan Li ◽  
Zhong-Tao Ding ◽  
...  

Novel podophyllotoxin xyloside derivatives 8 to 11 were synthesized and evaluated for their cytotoxicities against a panel of 5 human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. These derivatives showed good to moderate activities, with compound 9 having an IC50 value of 4.42 μM against the A-549 cell line. Overall, compound 9 might be a promising candidate for further development.


Sign in / Sign up

Export Citation Format

Share Document