A combined approach of convolutional neural networks and machine learning for visual fault classification in photovoltaic modules

Author(s):  
Sridharan Naveen Venkatesh ◽  
Vaithiyanathan Sugumaran

Fault diagnosis plays a significant role in enhancing the useful lifetime, power output, and reliability of photovoltaic modules (PVM). Visual faults such as burn marks, delamination, discoloration, glass breakage, and snail trails make detection of faults difficult under harsh environmental conditions. Various researchers have made several attempts to identify visual faults in a PVM. However, much of the previous studies were centered on the identification and analysis of limited number of faults. This article presents the use of a deep convolutional neural network (CNN) to extract image features and perform an effective classification of faults by machine learning (ML) algorithms. In contrast to the present-day work, five different fault conditions were considered in the study. The proposed solution consists of three phases, to effectively analyze various PVM defects. First, the module images are acquired using unmanned aerial vehicles (UAVs) and data augmentation is performed to generate a uniform dataset. Afterward, a pre-trained deep CNN is adopted for image feature extraction. Finally, the extracted image features are classified with the help of various ML classifiers. The final results show the effectiveness of pre-trained deep CNN and accurate performance of ML classifiers. The best-in-class ML classifier for multiple fault classification is suggested based on the performance comparison.

2014 ◽  
Vol 931-932 ◽  
pp. 942-946
Author(s):  
Shutchon Premchaisawatt ◽  
Nararat Ruangchaijatupon

This research aims to purpose the new method, which is called Error Flag Framework (EFF) to enhance accuracy fingerprinting indoor positioning of wireless device by using machine learning algorithms. EFF is compared with well-known machine learning classifiers; i.e. Decision Tree, Naive Bayes, and Artificial Neural Networks, by exploiting the signal strength from limited information. The performance comparison is done in terms of accuracy of classification of positions, precision of distance classified, and effects of classification of positions on results from quantity of learning data. The result of this study can suggest that EFF can increase performance for indoor positioning of every well-known classifier, especially when the quantity of learning data is large enough. Hence, EFF is the alternate way for implementing in positioning software by using the fingerprinting method.


2019 ◽  
Vol 43 (4) ◽  
pp. 677-691
Author(s):  
A.A. Sirota ◽  
A.O. Donskikh ◽  
A.V. Akimov ◽  
D.A. Minakov

A problem of non-parametric multivariate density estimation for machine learning and data augmentation is considered. A new mixed density estimation method based on calculating the convolution of independently obtained kernel density estimates for unknown distributions of informative features and a known (or independently estimated) density for non-informative interference occurring during measurements is proposed. Properties of the mixed density estimates obtained using this method are analyzed. The method is compared with a conventional Parzen-Rosenblatt window method applied directly to the training data. The equivalence of the mixed kernel density estimator and the data augmentation procedure based on the known (or estimated) statistical model of interference is theoretically and experimentally proven. The applicability of the mixed density estimators for training of machine learning algorithms for the classification of biological objects (elements of grain mixtures) based on spectral measurements in the visible and near-infrared regions is evaluated.


2020 ◽  
Vol 10 (23) ◽  
pp. 8481
Author(s):  
Cesar Federico Caiafa ◽  
Jordi Solé-Casals ◽  
Pere Marti-Puig ◽  
Sun Zhe ◽  
Toshihisa Tanaka

In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets.


2020 ◽  
pp. 1-12
Author(s):  
Gang Song

At present, there are still many deficiencies in Chinese-Japanese machine translation methods, the processing of corpus information is not deep enough, and the translation process lacks rich language knowledge support. In particular, the recognition accuracy of Japanese characters is not high. Based on machine learning technology, this study combines image feature retrieval technology to construct a Japanese character recognition model and uses Japanese character features as the algorithm recognition object. Moreover, this study expands image features by generating a brightness enhancement function using a bilateral grid. In order to exclude the influence of the edge and contour of the image scene on the analysis of the image source, the brightness value of the HDR image is used instead of the pixel value of the image as the image data. In addition, this research designs experiments to study the translation effects of this research model. The research results show that the model proposed in this paper has certain effects and can provide theoretical references for subsequent related research.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2953 ◽  
Author(s):  
Jessica Fernandes Lopes ◽  
Leniza Ludwig ◽  
Douglas Fernandes Barbin ◽  
Maria Victória Eiras Grossmann ◽  
Sylvio Barbon

Imaging sensors are largely employed in the food processing industry for quality control. Flour from malting barley varieties is a valuable ingredient in the food industry, but its use is restricted due to quality aspects such as color variations and the presence of husk fragments. On the other hand, naked varieties present superior quality with better visual appearance and nutritional composition for human consumption. Computer Vision Systems (CVS) can provide an automatic and precise classification of samples, but identification of grain and flour characteristics require more specialized methods. In this paper, we propose CVS combined with the Spatial Pyramid Partition ensemble (SPPe) technique to distinguish between naked and malting types of twenty-two flour varieties using image features and machine learning. SPPe leverages the analysis of patterns from different spatial regions, providing more reliable classification. Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), J48 decision tree, and Random Forest (RF) were compared for samples’ classification. Machine learning algorithms embedded in the CVS were induced based on 55 image features. The results ranged from 75.00% (k-NN) to 100.00% (J48) accuracy, showing that sample assessment by CVS with SPPe was highly accurate, representing a potential technique for automatic barley flour classification.


2021 ◽  
Author(s):  
Arif Jahangir

Traumatic Brain Injury is the primary cause of death and disability all over the world. Monitoring the intracranial pressure (ICP) and classifying it for hypertension signals is of crucial importance. This thesis explores the possibility of a better classification of the ICP signal and detection of hypertensive signal prior to the actual occurrence of the hypertensive episodes. This study differ from other approaches astime series is converted into images by Gramian angular field and Markov transition matrix and augmented with data. Due to unbalanced data, the effect of smote extended nearest neighbour algorithm for balancing the data is examined. We use various machine learning algorithms to classify the ICP signals. The results obtained shoe that Ada boost performance is the best among compared algorithms. F1 score of the Ada boost is 0.95 on original dataset, and 0.9967 on balanced and augmented dataset. Quadratic Discriminant Analysis F1 score is 1 when data is augmented and balanced.


Sign in / Sign up

Export Citation Format

Share Document