scholarly journals Current immunotherapeutic strategies in hepatocellular carcinoma: recent advances and future directions

2017 ◽  
Vol 10 (10) ◽  
pp. 805-814 ◽  
Author(s):  
Hwi Young Kim ◽  
Joong-Won Park

Hepatocellular carcinoma (HCC) is a common and serious health problem with high mortality. Treatment for HCC remains largely unsatisfactory owing to its high recurrence rates and frequent accompanying cirrhosis. In addition, the unique immune environment of the liver promotes tolerance, which, in conjunction with immune evasion by the disease, makes HCC a less promising target for conventional immunotherapy. However, recent advances in the immunotherapy have led to novel approaches to overcome these obstacles by manipulating and enhancing tumor-specific immune responses against HCC by using various modalities, such as cancer vaccines and immune checkpoint blockade. These treatments have shown both safety and promising outcomes in patients with HCC of various etiologies and tumor stages. Furthermore, combined strategies have been assessed to achieve optimal outcomes, by using immunotherapies with or without conventional treatments. This review briefly covers the background, recent advances, current issues, and future perspectives on immunotherapy in the field of HCC treatment.

Immunotherapy ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 391-393 ◽  
Author(s):  
Franco M Buonaguro ◽  
Luigi Buonaguro

2021 ◽  
Vol 12 ◽  
Author(s):  
Huimin Tao ◽  
Mingyu Liu ◽  
Yuan Wang ◽  
Shufeng Luo ◽  
Yongquan Xu ◽  
...  

Recent studies have demonstrated that splenic extramedullary hematopoiesis (EMH) is an important mechanism for the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissues, and thus contributes to disease progression. Icaritin, a prenylflavonoid derivative from plants of the Epimedium genus, has been implicated as a novel immune-modulator that could prolong the survival of hepatocellular carcinoma (HCC) patients. However, it is unclear whether icaritin achieves its anti-tumor effects via the regulation of MDSCs generated by EMH in HCC. Here, we investigated the anti-tumor potential of icaritin and its mechanism of action in murine HCC. Icaritin suppressed tumor progression and significantly prolonged the survival of mice-bearing orthotopic and subcutaneous HCC tumors. Rather than exerting direct cytotoxic activity against tumor cells, icaritin significantly reduced the accumulation and activation of tumoral and splenic MDSCs, and increased the number and activity of cytotoxic T cells. Mechanistically, icaritin downregulates the tumor-associated splenic EMH, thereby reducing the generation and activation of MDSCs. The inhibitory effects of icaritin on human MDSCs in vitro were verified in short-term culture with cord-blood derived hematopoietic precursors. Furthermore, icaritin synergistically enhanced the therapeutic efficacy of immune checkpoint blockade therapy in HCC mice. These findings revealed that icaritin dampens tumoral immunosuppression to elicit anti-tumor immune responses by preventing MDSC generation via the attenuation of EMH. Thus, icaritin may serve as a novel adjuvant or even a stand-alone therapeutic agent for the effective treatment of HCC.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1298
Author(s):  
Jagmohan Singh ◽  
Wilbur B. Bowne ◽  
Adam E. Snook

In this editorial, we highlight articles published in this Special Issue of Vaccines on “Cancer Vaccines and Immunotherapy for Tumor Prevention and Treatment”, recent developments in the field of cancer vaccines, and the potential for immunotherapeutic combinations in cancer care. This issue covers important developments and progress being made in the cancer vaccine field and possible future directions for exploring new technologies to produce optimal immune responses against cancer and expand the arena of prophylactic and therapeutic cancer vaccines for the treatment of this deadly disease.


2020 ◽  
Vol 5 ◽  
pp. 92-95
Author(s):  
Ashokachakkaravarthy Kandasamy ◽  
Biju Pottakkat

Hepatocellular carcinoma (HCC) is well known for its aggressive nature and high recurrence rates. Alpha- fetoprotein (AFP) secreting tumors are more common in HCC. However, a few proportion of HCC do not produce AFP more than the basal level. AFP secreting tumors are more aggressive in nature since the ability of AFP to promote effective progression, growth, and metastasis of tumor. AFP also intervenes the immune system to evade the immune responses against cancer cells. AFP-producing tumors contain poorly differentiated cells similar to embryonic stem cells of liver mimicking rapid replication, proliferation, and AFP secretion by fetal liver. In this review, we highlight the crucial roles of AFP in immune evasion, aggressiveness, progression, and tumor biology of HCC.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 775 ◽  
Author(s):  
Shigeharu Nakano ◽  
Yuji Eso ◽  
Hirokazu Okada ◽  
Atsushi Takai ◽  
Ken Takahashi ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death since most patients are diagnosed at advanced stage and the current systemic treatment options using molecular-targeted drugs remain unsatisfactory. However, the recent success of cancer immunotherapies has revolutionized the landscape of cancer therapy. Since HCC is characterized by metachronous multicentric occurrence, immunotherapies that induce systemic and durable responses could be an appealing treatment option. Despite the suppressive milieu of the liver and tumor immunosurveillance escape mechanisms, clinical studies of checkpoint inhibitors in patients with advanced HCC have yielded promising results. Here, we provide an update on recent advances in HCC immunotherapies. First, we describe the unique tolerogenic properties of hepatic immunity and its interaction with HCC and then review the status of already or nearly available immune checkpoint blockade-based therapies as well as other immunotherapy strategies at the preclinical or clinical trial stage.


Hepatology ◽  
2014 ◽  
Vol 60 (5) ◽  
pp. 1776-1782 ◽  
Author(s):  
Tai Hato ◽  
Lipika Goyal ◽  
Tim F. Greten ◽  
Dan G. Duda ◽  
Andrew X. Zhu

2021 ◽  
Vol 11 ◽  
Author(s):  
Jianfeng Hua ◽  
Pan Wu ◽  
Lu Gan ◽  
Zhikun Zhang ◽  
Jian He ◽  
...  

Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.


Sign in / Sign up

Export Citation Format

Share Document