scholarly journals Capillary and Venous Blood Glucose Accuracy in Blood Glucose Meters Versus Reference Standards: The Impact of Study Design on Accuracy Evaluations

2018 ◽  
Vol 13 (3) ◽  
pp. 546-552 ◽  
Author(s):  
Kirsty Macleod ◽  
Laurence B. Katz ◽  
Hilary Cameron

Background: Anecdotal blood glucose assessments conducted by health care professionals (HCPs) in the field have highlighted differences in results when methodology used is not according to best practices for measuring blood glucose. This study assessed the impact on accuracy of blood glucose measurements when methodology deviates from the recommended study design and recommended reference instrument. Methods: Adults with type 1 or type 2 diabetes provided capillary and venous blood samples for accuracy assessments using OneTouch® Verio® (Verio) and OneTouch® Ultra 2® (Ultra) blood glucose meters (BGM) and two different reference instruments. Results: Increases in mean bias were observed when comparing capillary to venous samples tested on the BGMs and the recommended reference instrument. Mean bias was even greater when a hospital blood glucose analyzer was used to measure venous plasma glucose. Increases in mean bias observed for Ultra BGM when testing venous blood on the meter compared to the recommended reference instrument was likely due to the interfering effects of low oxygen levels in the venous blood sample. Conversely, Verio meters, which are insensitive to low oxygen levels, showed little difference from baseline when testing venous blood on the meter compared to results from the same venous sample measured on a reference instrument. Conclusions: Deviations from the best practice study design of comparing capillary blood glucose results tested on the blood glucose meter with the manufacturer’s stated reference instrument will affect accuracy of blood glucose measurements.

2018 ◽  
Vol 13 (3) ◽  
pp. 553-558
Author(s):  
Gary H. Thorpe

The article by Macleod and coauthors outlines an accuracy study of two blood glucose monitoring systems (BGMSs) against glucose-oxidase- and hexokinase-based assays showing how the reference/comparison method and inappropriate sample comparisons can affect accuracy conclusions. The dangers of independent institutions producing inappropriate conclusions when the methodology used for product regulatory or registration accuracy requirements is not according to best practice are stressed. The authors highlight several important aspects of a multistep accuracy evaluation protocol. However, it is essential that anyone undertaking or reporting BGMS accuracy studies should have a clear understanding of each and every protocol point, best practice, and how each can influence accuracy conclusions. Claims against regulatory accuracy criteria should be made only if the detailed specified protocol design and analysis is followed.


2009 ◽  
Vol 2 (2) ◽  
pp. 46-51 ◽  
Author(s):  
K Hodby ◽  
P A Fields

One in every thousand pregnancies is complicated by a concurrent diagnosis of cancer. Lymphoma is currently the fourth most common malignancy diagnosed during pregnancy and its incidence is rising. The diagnosis and management of any malignancy during pregnancy is clearly a clinical and emotional minefield for both patients and health-care professionals. The major challenge is to optimize medical treatment offered to the mother, while limiting the impact on the fetus. Given the relative rarity of the situation, current practice is guided by case reports and personal experience of management of similar patients. Our centre has a large and busy lymphoma practice, and has cared for several women diagnosed with a variety of subtypes of lymphoma over the years. This review aims to summarize current opinion about best practice regarding these patients and discusses options available from the current literature.


Author(s):  
Cécile Bétry ◽  
Aline V. Nixon ◽  
Paul L. Greenhaff ◽  
Elizabeth J. Simpson

Abstract Introduction Skeletal muscle is a major site for whole-body glucose disposal, and determination of skeletal muscle glucose uptake is an important metabolic measurement, particularly in research focussed on interventions that impact muscle insulin sensitivity. Calculating arterial-venous difference in blood glucose can be used as an indirect measure for assessing glucose uptake. However, the possibility of multiple tissues contributing to the composition of venous blood, and the differential in glucose uptake kinetics between tissue types, suggests that sampling from different vein sites could influence the estimation of glucose uptake. This study aimed to determine the impact of venous cannula position on calculated forearm glucose uptake following an oral glucose challenge in resting and post-exercise states. Materials and Methods In 9 young, lean, males, the impact of sampling blood from two antecubital vein positions; the perforating vein (‘perforating’ visit) and, at the bifurcation of superficial and perforating veins (‘bifurcation’ visit), was assessed. Brachial artery blood flow and arterialised-venous and venous blood glucose concentrations were measured in 3 physiological states; resting-fasted, resting-fed, and fed following intermittent forearm muscle contraction (fed-exercise). Results Following glucose ingestion, forearm glucose uptake area under the curve was greater for the ‘perforating’ than for the ‘bifurcation’ visit in the resting-fed (5.92±1.56 vs. 3.69±1.35 mmol/60 min, P<0.01) and fed-exercise (17.38±7.73 vs. 11.40±7.31 mmol/75 min, P<0.05) states. Discussion Antecubital vein cannula position impacts calculated postprandial forearm glucose uptake. These findings have implications for longitudinal intervention studies where serial determination of forearm glucose uptake is required.


2018 ◽  
Vol 12 (2) ◽  
pp. 333-340 ◽  
Author(s):  
Andrew Hattemer ◽  
Sami Wardat

Introduction: ISO 15197:2013 recommends testing procedures and acceptance criteria for the evaluation of influence quantities such as hematocrit on measurement results with systems for self-monitoring of blood glucose (SMBG). In this study, hematocrit influence was evaluated for a novel SMBG system (system A) and five other systems with different hematocrit ranges based on ISO 15197:2013. Methods: Test procedures were performed with one test strip lot for each system. Each system was tested within the hematocrit range indicated in the manufacturer’s labeling (system A: 10-65%, B: 15-65%, C: 20-60%, D: 35-60%, E: 30-60%, F: 30-55%). According to ISO 15197:2013, clause 6.4.2, venous blood samples were used for the evaluation of hematocrit influence. The evaluation was performed for three glucose concentration categories (30-50 mg/dL, 96-144 mg/dL, and 280-420 mg/dL). For each glucose concentration category, at least five different hematocrit levels were investigated. Results: The novel system A and systems B, E, and F complied with the tested lot with the defined criteria and showed ≤10 mg/dL and ≤10% difference between the test sample and the respective control sample with a hematocrit value of 42% ± 2% for BG concentrations <100 mg/dL and ≥100 mg/dL, respectively. Two systems showed >10% difference at glucose concentrations ≥100 mg/dL. Conclusions: Remarkable hematocrit influence within the labeled hematocrit range was obtained in two systems with the tested reagent system lot. Adequate SMBG systems should be carefully chosen by patients and their health care professionals, particularly for patients with increased and decreased hematocrit values.


2019 ◽  
Author(s):  
Kamaleldin B Said ◽  
Xin Zhao ◽  
Marcus B Jones ◽  
Rosslyn Maybank ◽  
Scott Peterson

Abstract Background Mastitis-specialized lineages of Staphylococcus aureus are important pathogens in the dairy industry. The molecular mechanisms underlying host- and organ-specialization in these lineages are still not fully understood. Recent findings suggested that differential expression of genes may have contributed to the evolution of strains with enhanced virulence. However, studies on gene expressions under key intra-mammary conditions are quite limited for mastitis S. aureus . The purpose of the study was to investigate the influence of low oxygen levels on the transcriptome profiles of bovine matitis S. aureus , using high-throughput whole genome qRT-PCR.Results Results showed that under normal oxygenation, a mastitis-isolate expressed subsets of genes for adaptation, environmental-sensing, and binding including merR, sigB , vraS , yycG/yycF , araC , and tetR . In addition, coupling of fermentative metabolism to virulence was indicated by accumulated transcripts for catabolite control protein A ( ccpA) and pentose-monophosphate operon and depleted transcripts for tricaroxylic acid cycle. Furthermore, sarU mediated agr activation was evidented by transcripts for toxins, adaptation, and in-vivo viability factors as staphopains and gntR operon. On the other hand, reduced oxygenation increased transcription of fibrinogen-binding genes, isd- operon, and sdrH showing aggressive adherence phenotype. While normal oxygenation produced gene activities for quick and aggressive responses, low-oxygenation induced phenotypes for persistence, binding, and metabolic inactivity.Conclusion Significant differences in the transcriptional profiles were observed for mammary alveolar cell-T (MAC-T) internalized S. aureus under low oxygen levels compared to that at normal levels. This indicated that low oxygen is an important key mammary factor that influence transcriptome profiles of intra-mammary-specific phenotypes of S. aureus . These findings will help in understanding the effect of oxygen on the differentiation and evolution of intramammary S. aureus .


2019 ◽  
Vol 34 (05) ◽  
pp. 506-509
Author(s):  
Jessica Topping ◽  
Matthew Reardon ◽  
Jake Coleman ◽  
Brian Hunter ◽  
Haruka Shojima-Perera ◽  
...  

AbstractBackground:Blood glucose level (BGL) is routinely assessed by paramedics in the out-of-hospital setting. Most commonly, BGL is measured using a blood sample of capillary origin analyzed by a hand-held, point-of-care glucometer. In some clinical circumstances, the capillary sample may be replaced by blood of venous origin. Given most point-of-care glucometers are engineered to analyze capillary blood samples, the use of venous blood instead of capillary may lead to inaccurate or misleading measurements.Hypothesis/Problem:The aim of this prospective study was to compare mean difference in BGL between venous and capillary blood from healthy volunteers when measured using a capillary-based, hand-held, point-of-care glucometer.Methods:Using a prospective observational comparison design, 36 healthy participants provided paired samples of blood, one venous and the other capillary, taken near simultaneously. The BGL values were similar between the two groups. The capillary group had a range of 4.3mmol/l, with the lowest value being 4.4mmol/l and 8.7mmol/l the highest. The venous group had a range of 2.7mmol/l, with the lowest value being 4.1mmol/l and 7.0mmol/l the highest.For the primary research question, the mean BGL for the venous sample group was 5.3mmol/l (SD = 0.6), compared to 5.6mmol/l (SD = 0.8) for the capillary group. This represented a statistically significant difference of 0.3mmol/l (P = .04), but it did not reach the a priori established point of clinical significance (1.0mmol/l). Pearson’s correlation coefficient for capillary versus venous indicated moderate correlation (r = 0.42).Conclusion:In healthy, non-fasted people in a non-clinical setting, a statistically significant, but not clinically significant, difference was found between venous- and capillary-derived BGL when measured using a point-of-care, capillary-based glucometer. Correlation between the two was moderate. In this context, using venous samples in a capillary-based glucometer is reasonable providing the venous sample can be gathered without exposure of the clinician to risk of needle-stick injury. In clinical settings where physiological derangement or acute illness is present, capillary sampling would remain the optimal approach.


2014 ◽  
Vol 81 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Andrew D Fisher ◽  
Bronwyn H Stevens ◽  
Melanie J Conley ◽  
Ellen C Jongman ◽  
Mariko C Lauber ◽  
...  

Male dairy calves may be transported from their farm of origin at a young age. This process may involve an extended period off feed and indirect consignment through an intermediate facility, prompting potential welfare concerns. To assess the impact of transport, 59 male Holstein-Friesian dairy calves (5–9 d old) were either (1) held in situ on farm (control); (2) transported for 6 h; (3) transported for 12 h; or (4) transported for 1 h to a holding facility where they were kept for 6 h and then transported for 5 h. All treatments included a 30-h period of feed (milk) withdrawal, and calf responses were measured over time from before their last feed until the completion of the study after the transport and feed withdrawal periods. Apart from increases in serum creatine kinase in calves transported for 12 h, transported calves generally did not differ in blood concentrations of glucose, beta-hydroxybutyrate, lactate, total protein or in packed cell volume, compared with controls (P>0·05). Calf responses to the indirect consignment treatment did not differ from those of other transported calves. Withdrawal of feed for 30 h caused calves to lose 6% of body weight; blood glucose varied from 3·96 mmol/l immediately before daily feeding to 5·46 mmol/l at 3 h post feeding, and then declined to 3·43 mmol/l at 30 h. Calves lay down for 22–32% of the time during transport, and did not show a rebound effect in lying behaviour post arrival in comparison with controls. Best practice transport of 6–12 h duration, including indirect consignment via a holding facility, did not significantly affect calf blood biochemistry and metabolism in comparison with untransported animals. However, extending the time off feed beyond the daily feeding interval resulted in reduced blood glucose concentrations, suggesting that time off feed needs to be carefully managed in young transported dairy calves.


2021 ◽  
Vol 22 (18) ◽  
pp. 9675
Author(s):  
Hui Zhao ◽  
Ronald J. Wong ◽  
David K. Stevenson

Oxygen levels in the placental microenvironment throughout gestation are not constant, with severe hypoxic conditions present during the first trimester. This hypoxic phase overlaps with the most critical stages of placental development, i.e., blastocyst implantation, cytotrophoblast invasion, and spiral artery remodeling initiation. Dysregulation of any of these steps in early gestation can result in pregnancy loss and/or adverse pregnancy outcomes. Hypoxia has been shown to regulate not only the self-renewal, proliferation, and differentiation of trophoblast stem cells and progenitor cells, but also the recruitment, phenotype, and function of maternal immune cells. In this review, we will summarize how oxygen levels in early placental development determine the survival, fate, and function of several important cell types, e.g., trophoblast stem cells, extravillous trophoblasts, syncytiotrophoblasts, uterine natural killer cells, Hofbauer cells, and decidual macrophages. We will also discuss the cellular mechanisms used to cope with low oxygen tensions, such as the induction of hypoxia-inducible factor (HIF) or mammalian target of rapamycin (mTOR) signals, regulation of the metabolic pathway, and adaptation to autophagy. Understanding the beneficial roles of hypoxia in early placental development will provide insights into the root cause(s) of some pregnancy disorders, such as spontaneous abortion, preeclampsia, and intrauterine growth restriction.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 778-P
Author(s):  
ZIYU LIU ◽  
CHAOFAN WANG ◽  
XUEYING ZHENG ◽  
SIHUI LUO ◽  
DAIZHI YANG ◽  
...  

2019 ◽  
Author(s):  
Curtis David Von Gunten ◽  
Bruce D Bartholow

A primary psychometric concern with laboratory-based inhibition tasks has been their reliability. However, a reliable measure may not be necessary or sufficient for reliably detecting effects (statistical power). The current study used a bootstrap sampling approach to systematically examine how the number of participants, the number of trials, the magnitude of an effect, and study design (between- vs. within-subject) jointly contribute to power in five commonly used inhibition tasks. The results demonstrate the shortcomings of relying solely on measurement reliability when determining the number of trials to use in an inhibition task: high internal reliability can be accompanied with low power and low reliability can be accompanied with high power. For instance, adding additional trials once sufficient reliability has been reached can result in large gains in power. The dissociation between reliability and power was particularly apparent in between-subject designs where the number of participants contributed greatly to power but little to reliability, and where the number of trials contributed greatly to reliability but only modestly (depending on the task) to power. For between-subject designs, the probability of detecting small-to-medium-sized effects with 150 participants (total) was generally less than 55%. However, effect size was positively associated with number of trials. Thus, researchers have some control over effect size and this needs to be considered when conducting power analyses using analytic methods that take such effect sizes as an argument. Results are discussed in the context of recent claims regarding the role of inhibition tasks in experimental and individual difference designs.


Sign in / Sign up

Export Citation Format

Share Document