Murine Xenograft Model for Human Uterine Fibroids: An In Vivo Imaging Approach

2009 ◽  
Vol 16 (9) ◽  
pp. 827-842 ◽  
Author(s):  
Guangli Suo ◽  
Anil Sadarangani ◽  
Babbette LaMarca ◽  
Bryan Cowan ◽  
Jean Y. J. Wang
2008 ◽  
Vol 105 (35) ◽  
pp. 12985-12990 ◽  
Author(s):  
K. Birsoy ◽  
A. Soukas ◽  
J. Torrens ◽  
G. Ceccarini ◽  
J. Montez ◽  
...  

2021 ◽  
Vol 11 (22) ◽  
pp. 10526
Author(s):  
Shuang Zhao ◽  
Shangyun Lu ◽  
Lihong Fan ◽  
Hongbo Hu

Gefitinib has been clinically demonstrated to be effective in the first-line setting for patients with advanced EGFR-mutated non-small cell lung cancer (NSCLC). However, acquired therapeutic resistance to gefitinib almost unavoidably develops, posing a major hurdle for its clinical utilization. Our previous study showed that glycyrol (GC), a representative of coumarin compounds isolated from the medicinal plant licorice, was effective against A549 lung cancer cells in both cell culture and a murine xenograft model. In this follow-up study, we evaluated the effect of glycyrol against gefitinib-resistant NSCLC and its ability to overcome the resistance using gefitinib-resistant HCC827GR cells. Results showed that glycyrol was effective against HCC827GR cells in both in vitro and in vivo. Moreover, glycyrol was able to significantly increase the sensitivity of HCC827GR cells to gefitinib, mechanistically associated with inactivating MET, which is a known important contributor to the resistance of HCC827GR cells to gefitinib. The findings of the present study suggest that glycyrol holds potential to be developed as a novel agent against gefitinib-resistant NSCLC.


2020 ◽  
Vol 21 (18) ◽  
pp. 6672
Author(s):  
Zora Novakova ◽  
Nikola Belousova ◽  
Catherine A. Foss ◽  
Barbora Havlinova ◽  
Marketa Gresova ◽  
...  

Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.


2018 ◽  
Vol 26 (1) ◽  
pp. 138-139 ◽  
Author(s):  
Teruki Shimizu ◽  
Masatsugu Miyashita ◽  
Atsuko Fujihara ◽  
Fumiya Hongo ◽  
Osamu Ukimura ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3000-3000 ◽  
Author(s):  
Arghya Ray ◽  
Deepika Sharma DAS ◽  
Yan Song ◽  
Vincent Macri ◽  
Christopher L. Brooks ◽  
...  

Abstract Introduction Multiple myeloma (MM) remains incurable despite novel therapies, highlighting the need for further identification of factors mediating disease progression and resistance. Our studies have identified an integral role of bone marrow (BM) plasmacytoid dendritic cells (pDCs) in MM pathogenesis. The functional significance of increased numbers of pDCs in MM BM is evident from our observations that pDCs: are relatively resistant to novel and conventional therapies; protect tumor cells from therapy-induced cytotoxicity; promote tumor growth and survival; and suppress immune responses (Chauhan et al, Cancer Cell 2009, 16:309-323). Aberrant pDC function is evidenced in their interactions not only with MM cells, but also with other immune effector T cells and NK cells in the MM BM milieu (Ray et al, Leukemia 2015, 29:1441-1444). Directly targeting pDC interactions with MM and immune effector cells in the MM BM milieu will be required to enhance both anti-tumor immunity and cytotoxicity. However, therapies targeting pDCs are lacking. We found that IL-3R is highly expressed on pDCs, and that pDC-MM interactions trigger secretion of IL-3, which in turn, promotes both pDC survival and osteolytic bone disease. Recent efforts have led to the development of a novel therapeutic agent SL-401, which specifically targets IL-3R-expressing pDCs. Here we examined the effect of SL-401 on pDC-induced MM cell growth both in vitro and in vivo, as well as on IL-3R-expressing osteoclasts. Methods Patient MM cells, pDCs, and MNCs were obtained from normal donors or MM patients. Cell growth/viability was analyzed using MTT/WST assays. OCL function and bone resorption were measured using the OsteoAssays and TRAP staining. The RPMI-8226 cell line was used to isolate MM-SPs by flow-cytometry based Hoechst 33342 staining. SL-401 is a recombinant protein expressed in E. coli. The hybrid gene is comprised of human IL-3 fused to truncated diphtheria toxin (DT). The IL-3 domain of SL-401, which replaces the native binding domain of DT, targets SL-401 to cells that overexpress IL-3R. SL-401 was obtained from Stemline Therapeutics, NY; bortezomib, lenalidomide, pomalidomide, and melphalan were purchased from Selleck Chemicals. For animal model studies, SL-401 (16.5 μg/kg) was administered intravenously daily for 2 weeks. Results SL-401 triggered significant apoptosis in pDCs (>95%) at low picomolar concentrations that are well within clinically achievable doses.Higher concentrations of SL-401 trigger a modest apoptosis (30%± 1.3% apoptosis at 83 ng/ml or 1.3 nM) in MM cells due to lower IL-3R expression versus pDCs. Moreover, SL-401 did not significantly induce apoptosis of normal PBMCs (8% ± 0.5% apoptosis at 83 ng/ml), suggesting a favorable therapeutic index for SL-401. SL-401 inhibited pDC-induced growth of MM cell lines and patient MM cells in a dose-dependent manner. Moreover, 6 of 9 MM samples were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Combinations of SL-401 with melphalan, bortezomib, lenalidomide, or pomalidomide induced synergistic anti-MM activity (Combination index < 1). SL-401 blocked monocyte-derived osteoclast formation in a dose-dependent fashion, as well as restored MM patient BM-derived osteoblast formation. Having defined the efficacy of SL-401 in targeting pDCs and pDC-triggered MM cell growth in vitro, we validated these findings in vivo using our murine xenograft model of human MM, under auspices of protocols approved by our institutional animal protection committee. SL-401 inhibited pDC-induced MM cell growth in vivo and prolonged survival in a murine xenograft model of human MM. We also evaluated the efficacy of SL-401 in vivo using our SCID-human (SCID-hu) mouse model, which reflects the human BM milieu with human cytokines and extracellular matrix proteins. SL-401 significantly abrogated pDC-triggered MM cell growth in vivo in SCID-hu model. Conclusions Our data provide the basis for using SL-401 to directly target pDCs and inhibit the pDC-MM interaction as well as target osteolytic bone disease in novel therapeutic strategies in order to enhance MM cytotoxicity, overcome drug resistance, and improve patient outcome. The interactions of immune effector cells in the MM tumor microenvironment also provide a rationale for combining SL-401 with checkpoint inhibitors. Correspondence: Dharminder Chauhan Disclosures Macri: Stemline Therapeutics, Inc., New York, NY USA: Employment. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Rowinsky:Stemline Therapeutics: Employment, Equity Ownership. Richardson:Millennium Takeda: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gentium S.p.A.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees. Chauhan:Stemline Therapeutics: Consultancy.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 9008-9008
Author(s):  
N. M. Ahmed ◽  
M. K. Ratnayake ◽  
B. Savoldo ◽  
L. Perlaky ◽  
G. P. Dotti ◽  
...  

9008 Background: The long-term objective of this project is to develop an innovative HER2-targeted immunotherapeutic approach for medulloblastoma, the most common malignant brain tumor of childhood. HER2 is expressed in 40% of medulloblastomas and at present less than one third of patients with HER2-positive tumors are cured by conventional therapies. The aim of this study was to determine if T cells grafted with a HER2-specific chimeric antigen receptor (CAR) recognize and kill HER2-positive medulloblastomas. Methods: Mitogen-activated T cells from healthy donors and medulloblastoma patients were transduced with a retroviral vector encoding a HER2-specific CAR with a ζ-signaling domain (HER2T-cells). We analyzed the ability of HER2T-cells to 1) proliferate, 2) produce immunostimulatory cytokines (IFN-γ and IL-2), and 3) kill HER2-positive targets in cytoxicity assays upon exposure to HER2-positive primary medulloblastoma cells and cell lines. The in vivo function was tested in an orthotopic murine xenograft model of human medulloblastoma, which allows for serial imaging by bioluminescence. Results: HER2T-cells killed both HER2-positive primary medulloblastoma cells and cell lines in cytotoxicity assays, whereas HER2-negative tumor cells were not killed. Stimulation of HER2T-cells resulted in T-cell proliferation and secretion of IFN-γ and IL-2 in a HER2-dependent manner. No functional difference was observed between cells generated from medulloblastoma patients receiving dexamethasone and healthy donors. In vivo, the adoptive transfer of HER2T-cells resulted in sustained regression of established medulloblastomas in an orthotopic murine xenograft model as judged by bioluminescence imaging. In contrast, delivery of non-transduced T cells did not change tumor growth in comparison to untreated tumors. Conclusions: This study shows for the first time that HER2 is a target antigen for the immunotherapy of medulloblastoma. HER2-redirected T-cells not only recognized and killed HER2-positive medulloblastomas ex vivo, but also induced regression of experimental medulloblastoma in vivo. Hence, adoptive transfer of HER2-redirected T-cells may represent a promising immunotherapeutic approach for medulloblastoma. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document