scholarly journals Betulin Protects HT-22 Hippocampal Cells against ER Stress through Induction of Heme Oxygenase-1 and Inhibition of ROS Production

2019 ◽  
Vol 14 (12) ◽  
pp. 1934578X1989668 ◽  
Author(s):  
Phil Jun Lee ◽  
Hye-Jin Park ◽  
Hee Min Yoo ◽  
Namki Cho

A key pathologic event in neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, is endoplasmic reticulum (ER) stress-induced neuronal cell death. ER stress-induced generation of reactive oxygen species (ROS) has been implicated in neurological disease processes. Betulin is one of the major triterpenoids found in Betula platyphylla that possesses several biological properties, including cytoprotective and antioxidative effects. Therefore, we investigated whether betulin could prevent ER stress-induced neurotoxicity in HT-22 hippocampal neuronal cells. We observed that betulin reduced the thapsigargin (TG, an ER stress inducer)-induced apoptosis of HT-22 cells. Moreover, the cytoprotective effects of betulin were comparable to those of tauroursodeoxycholic acid, a potent ER stress-reducing agent. In our study, we confirmed that the ER stress-induced accumulation of ROS plays an important role in HT-22 cell death. Betulin also displayed cytoprotective effects in TG-injured HT-22 cells by reducing ROS generation; these results were comparable to those for N-acetyl-L-cysteine, a known ROS inhibitor. In addition, SnPP, a heme oxygenase-1 (HO-1) inhibitor significantly blocked the cytoprotective effects and ROS scavenging activity of betulin. Based on these results, we believe that betulin-mediated induction of HO-1 may contribute to the neuroprotective effects against ER stress in HT-22 hippocampal cells. We also found that betulin significantly inhibited the TG-induced expression of CHOP and caspase-12. These results demonstrated that betulin could serve as a potential therapeutic agent against ER stress-induced neurodegenerative diseases.

Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 496 ◽  
Author(s):  
Sandra Kaiser ◽  
Sibylle Frase ◽  
Lisa Selzner ◽  
Judith-Lisa Lieberum ◽  
Jakob Wollborn ◽  
...  

(1) Background: A detailed understanding of the pathophysiology of hemorrhagic stroke is still missing. We hypothesized that expression of heme oxygenase-1 (HO-1) in microglia functions as a protective signaling pathway. (2) Methods: Hippocampal HT22 neuronal cells were exposed to heme-containing blood components and cell death was determined. We evaluated HO-1-induction and cytokine release by wildtype compared to tissue-specific HO-1-deficient (LyzM-Cre.Hmox1 fl/fl) primary microglia (PMG). In a study involving 46 patients with subarachnoid hemorrhage (SAH), relative HO-1 mRNA level in the cerebrospinal fluid were correlated with hematoma size and functional outcome. (3) Results: Neuronal cell death was induced by exposure to whole blood and hemoglobin. HO-1 was induced in microglia following blood exposure. Neuronal cells were protected from cell death by microglia cell medium conditioned with blood. This was associated with a HO-1-dependent increase in monocyte chemotactic protein-1 (MCP-1) production. HO-1 mRNA level in the cerebrospinal fluid of SAH-patients correlated positively with hematoma size. High HO-1 mRNA level in relation to hematoma size were associated with improved functional outcome at hospital discharge. (4) Conclusions: Microglial HO-1 induction with endogenous CO production functions as a crucial signaling pathway in blood-induced inflammation, determining microglial MCP-1 production and the extent of neuronal cell death. These results give further insight into the pathophysiology of neuronal damage after SAH and the function of HO-1 in humans.


2013 ◽  
Vol 35 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Jinbum Bae ◽  
Danbi Lee ◽  
Yun Kyu Kim ◽  
Minchan Gil ◽  
Joo-Yong Lee ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50138 ◽  
Author(s):  
Hsiao-Yun Lin ◽  
Wei-Lan Yeh ◽  
Bor-Ren Huang ◽  
Chingju Lin ◽  
Chih-Ho Lai ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 210-217
Author(s):  
Yibiao Wang ◽  
Min Xu

Abstract Background This study aimed to explore the role of miR-380-5p in cerebral ischemia/reperfusion (CIR) injury-induced neuronal cell death and the potential signaling pathway involved. Methodology Human neuroblastoma cell line SH-SY5Y cells were used in this study. Oxygen and glucose deprivation/reperfusion (OGD/R) model was used to mimic ischemia/reperfusion injury. CCK-8 assay and flow cytometry were used to examine cell survival. Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to measure the change of RNA and protein expression, respectively. TargetScan and Luciferase assay was used to confirm the target of miR-380-5p. Malondialdehyde (MDA) superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) were measured using commercial kits. Results miR-380-5p was downregulated in SH-SY5Y cells after OGD/R. Cell viability was increased by miR-380-5p, while cell apoptosis was reduced by miR-380-5p mimics. MDA was reduced by miR-380-5p mimics, while SOD and GSHPx were increased by miR-380-5p. Results of TargetScan and luciferase assay have showed that BACH1 is the direct target of miR-380-5p. Expression of NRF2 was upregulated after OGD/R, but was not affected by miR-380-5p. mRNA expression of HO-1 and NQO1 and ARE activity were increased by miR-380-5p. Overexpression of BACH1 reversed the antioxidant and neuroprotective effects of miR-380-5p. Conclusion miR-380-5p inhibited cell death induced by CIR injury through target BACH1 which also facilitated the activation of NRF2, indicating the antioxidant and neuroprotective effects of miR-380-5p.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jade Heejae Ko ◽  
Ju-Hee Lee ◽  
Bobin Choi ◽  
Ju-Yeon Park ◽  
Young-Won Kwon ◽  
...  

Parkinson’s disease is a neurodegenerative disease characterized by progressive cell death of dopaminergic neuron and following neurological disorders. Gagam-Sipjeondaebo-Tang (GST) is a novel herbal formula made of twelve medicinal herbs derived from Sipjeondaebo-Tang, which has been broadly used in a traditional herbal medicine. In the present study, we investigated the effects of GST against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor abnormalities in mice and 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in SH-SY5Y cell. First, we found that GST alleviated motor dysfunction induced by MPTP, and the result showed dopaminergic neurons recovery in substantia nigra. In the cell experiment, pretreatment with GST increased the cell viability and attenuated apoptotic cell death in MPP+-treated SH-SY5Y cells. GST also inhibited reactive oxygen species production and restored the mitochondrial membrane potential loss, which were induced by MPP+. Furthermore, GST extract significantly activated ERK and Akt, cell survival-related proteins, in SH-SY5Y cells. The effect of GST preventing mitochondrial dysfunction was antagonized by pretreatment of PD98059 and LY294002, selective inhibitors of ERK and Akt, respectively. Taken together, GST alleviated abnormal motor functions and recovered neuronal cell death, mitochondrial dysfunction, possibly via ERK and Akt activation. Therefore, we suggest that GST may be a candidate for the treatment and prevention of Parkinson’s disease.


2019 ◽  
Vol 39 (20) ◽  
Author(s):  
Mi Hye Kim ◽  
Hong Jun Lee ◽  
Sang-Rae Lee ◽  
Hyun-Shik Lee ◽  
Jae-Won Huh ◽  
...  

ABSTRACT Glutamate is an essential neurotransmitter in the central nervous system (CNS). However, high glutamate concentrations can lead to neurodegenerative diseases. A hallmark of glutamate toxicity is high levels of reactive oxygen species (ROS), which can trigger Ca2+ influx and dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Peroxiredoxin 5 (Prx5) is a well-known cysteine-dependent peroxidase enzyme. However, the precise effects of Prx5 on glutamate toxicity are still unclear. In this study, we investigated the role of Prx5 in glutamate-induced neuronal cell death. We found that glutamate treatment induces endogenous Prx5 expression and Ca2+/calcineurin-dependent dephosphorylation of Drp1, resulting in mitochondrial fission and neuronal cell death. Our results indicate that Prx5 inhibits glutamate-induced mitochondrial fission through the regulation of Ca2+/calcineurin-dependent dephosphorylation of Drp1, and it does so by scavenging cytosolic and mitochondrial ROS. Therefore, we suggest that Ca2+/calcineurin-dependent mitochondrial dynamics are deeply associated with glutamate-induced neurotoxicity. Consequently, Prx5 may be used as a potential agent for developing therapies against glutamate-induced neurotoxicity and neurodegenerative diseases where it plays a key role.


Sign in / Sign up

Export Citation Format

Share Document