scholarly journals Progress on Terpenoids With Biological Activities Produced by Plant Endophytic Fungi in China Between 2017 and 2019

2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093720
Author(s):  
Yu Zhao ◽  
Jing Cui ◽  
Mengyujie Liu ◽  
Lei Zhao

Plant endophytic fungi are an important part of plant microecosystems and a natural resource for human survival and development. Various bioactive natural products produced by plant endophytic fungi show promising prospects in biopharmacy, agricultural production, and industrial fermentation. Terpenoids, the most numerous and structurally diverse natural products from endophytic fungi, possess a broad range of biological activities and huge potential for drug development. It is critically significant for ecological and economic benefits to develop their activities. This paper utilized literature analysis to summarize 200 terpenoids with biological activities that are derived from plant endophytic fungi in China between 2017 and 2019. Among them, sesquiterpenoids were the most important kind of terpenoids, and Trichoderma and Aspergillus species were main terpenoid-producing plant endophytic fungi. Furthermore, these terpenoids displayed multifarious biological activities, including antimicrobial, antipathogenic, and anti-inflammatory activities, as well as cytotoxicity, antitumor agents, and enzyme inhibition.

2020 ◽  
Vol 24 (4) ◽  
pp. 354-401 ◽  
Author(s):  
Keisham S. Singh

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.


Marine OMICS ◽  
2016 ◽  
pp. 383-405
Author(s):  
Vasuki Subramanian ◽  
P. Anantharaman ◽  
K. Kathiresan

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2753 ◽  
Author(s):  
Sabrina Esposito ◽  
Alessandro Bianco ◽  
Rosita Russo ◽  
Antimo Di Maro ◽  
Carla Isernia ◽  
...  

A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.


RSC Advances ◽  
2017 ◽  
Vol 7 (60) ◽  
pp. 38100-38109 ◽  
Author(s):  
Jun Xie ◽  
Ying-Ying Wu ◽  
Tian-Yuan Zhang ◽  
Meng-Yue Zhang ◽  
Wei-Wei Zhu ◽  
...  

Secondary metabolites with cytotoxic activity, antiviral activity and antimicrobial activity from the endophytic fungi of Panax notoginseng.


2008 ◽  
Vol 49 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Margareth B. C. Gallo ◽  
Fernanda O. Chagas ◽  
Marília O. Almeida ◽  
Cláudia C. Macedo ◽  
Bruno C. Cavalcanti ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jucélia Iantas ◽  
Daiani Cristina Savi ◽  
Renata da Silva Schibelbein ◽  
Sandriele Aparecida Noriler ◽  
Beatriz Marques Assad ◽  
...  

Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 μg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 μg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.


2021 ◽  
Vol 25 ◽  
Author(s):  
Dau Xuan Duc ◽  
Nguyen Thi Chung

: Oxazole-containing compounds have diverse biological activities, such as antimicrobial, anticancer, antitubercular, anti-inflammatory, antidiabetic, antiobesity, antimalarial, and antiviral activities, and some of them have been used as drugs for disease treatment. They also play important roles in the synthesis of bioactive natural products, pharmaceuticals, and synthetic transformations, as well as in materials, catalysts, and agricultural fields. Thus, the development of more efficient and facile synthetic approaches to access oxazole compounds has attracted the intensive interest of chemists, and diverse methods for their synthesis have been investigated. Various established methods have been improved and modified, while numerous novel methods have been discovered. This article summarizes considerable studies on the construction of the oxazole skeleton, which date back to 2014.


2021 ◽  
Vol 25 ◽  
Author(s):  
Sasadhar Majhi

: Natural products are the most effective source of potential drug leads. The total synthesis of bioactive natural products plays a crucial role to confirm the hypothetical complex structure of natural products in the laboratory. The total synthesis of rare bioactive natural products is one of the great challenges for the organic synthetic community due to their complex structures, biochemical specificity, and stubborn stereochemistry. Subsequently, the total synthesis is a long process in several cases and it requires a substantial amount of time. Microwave irradiation has emerged as a greener tool in organic methodologies to reduce reaction times from days and hours to minutes and seconds. Moreover, this non-classical methodology increases product yields and purities, improves reproducibility, modifications of selectivity, simplification of work-up methods, and reduces unwanted side reactions. Such beneficial qualities have stimulated this review to cover the application of microwave irradiation in the field of the total synthesis of bioactive natural products for the first time during the last decade. An overview of the use of microwave irradiation, natural sources, structures, and biological activities of secondary metabolites is presented elegantly, focusing on the involvement of at least one or more steps by microwave irradiation as a green technique.


Sign in / Sign up

Export Citation Format

Share Document