scholarly journals Inhibitory Mechanism of Engeletin Against α-Glucosidase

2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098672
Author(s):  
Yunbo Li ◽  
Xiaoling Liu ◽  
Haoyu Zhou ◽  
Bo Li ◽  
Igor Kostiantinovich Mazurenko

The inhibitory mechanism of engeletin against α-glucosidase was investigated for the first time by fluorescence spectroscopy and molecular docking. The results showed that engeletin could inhibit α-glucosidase in a noncompetitive inhibition mode with a half-maximal inhibitory concentration value of 48.5 ± 6.0 µg/mL (0.11 ± 0.014 mmol/L). It was found that engeletin could cause static fluorescence quenching of α-glucosidase by forming a complex with α-glucosidase. The thermodynamic parameters indicated that the combination of engeletin and α-glucosidase was driven by hydrophobic force. The molecular docking results confirmed that some amino acid residues of α-glucosidase (Trp391, Arg428, Glu429, Gly566, Trp710, Glu771) could interact with engeletin by hydrogen bonding.

2020 ◽  
Vol 17 (10) ◽  
pp. 1293-1308 ◽  
Author(s):  
Sapna Jain Dabade ◽  
Dheeraj Mandloi ◽  
Amritlal Bajaj

Background: Treatments of fungal diseases, including Candidiasis, remain not up to scratch in spite of the mounting catalog of synthetic antifungal agents. These have served as the impetus for investigating new antifungal agents based on natural products. Consequently, genetic algorithm-multiple linear regression (GA-MLR) based QSAR (Quantitative Structure-Activity Relationship) studies of coumarin analogues along with molecular docking were carried out. Methods: Coumarin analogues with their MIC values were used to generate the training and test sets of compounds for QSAR models development; the analogues were also docked into the binding pocket of NMT (MyristoylCoA: protein N-myristoyltransferase). Results and Discussion: The statistical parameters for internal and external validation of QSAR analysis (R2 = 0.830, Q2 = 0.758, R2Pred = 0.610 and R2m overall = 0.683 ), Y Randomization, Ridge trace, VIF, tolerance and model criteria of Golbraikh and Tropsha data illustrate the robustness of the best proposed QSAR model. Most of the analogues bind to the electrostatic, hydrophobic clamp and display hydrogen bonding with amino acid residues of NMT. Interestingly, the most active coumarin analogue (MolDock score of -189.257) was docked deeply within the binding pocket of NMT, thereby displaying hydrogen bonding with Tyr107, Leu451, Leu450, Gln226, Cys393 and Leu394 amino acid residues. Conclusion: The combinations of descriptors from various descriptor subsets in QSAR analysis have highlighted the role of atomic properties such as polarizability and atomic van der Waals volume to explain the inhibitory activity. The models and related information may pave the way for important insight into the designing of putative NMT inhibitors for Candida albicans.


2017 ◽  
Vol 12 (11) ◽  
pp. 1934578X1701201 ◽  
Author(s):  
Jiang Liu ◽  
Xiansheng Wang ◽  
Sheng Geng ◽  
Benguo Liu ◽  
Guizhao Liang

The α-glucosidase inhibitory activity and behavior of taxifolin was first investigated by spectrofluorimetry and molecular docking. It was found that taxifolin inhibits α-glucosidase in a competitive manner with the IC50 value of 0.16 mg/mL. The intrinsic fluorescence quenching of α-glucosidase in the presence of taxifolin was observed by the static quenching mechanism. According to the thermodynamic study, the complex of taxifolin and α-glucosidase was maintained by van der Waals and hydrogen bonding. The binding mode provided by molecular docking simulation indicated the existence of hydrogen bonding between taxifolin and the amino acid residues of α-glucosidase (Glu429, Asp 568 and Glu771), which coincided with the result of fluorescence analysis.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4147
Author(s):  
Neha Gupta ◽  
Saurav Kumar Choudhary ◽  
Neeta Bhagat ◽  
Muthusamy Karthikeyan ◽  
Archana Chaturvedi

The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein–protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.


Author(s):  
Liu ◽  
Sun ◽  
Cui ◽  
Ding

To improve the biodegradation efficiency of fluoroquinolone antibiotics during sewage treatment, fluoroquinolone aerobic, anaerobic and facultative degrading enzymes for fluoroquinolone degradation were modified by molecular docking and homology modelling. First, amino acid residues of the binding sites of degrading enzymes for the target fluoroquinolones ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) were analysed by the molecular docking method. The hydrophobic amino acid residues within 5 Å of the target fluoroquinolone molecules were selected as the modification sites. The hydrophobic amino acid residues at the modified sites were replaced by the hydrophilic amino acid residues, and 150 amino acid sequence modification schemes of the degrading enzymes were designed. Subsequently, a reconstruction scheme of the degrading enzyme amino acid sequence reconstruction scheme was submitted to the SWISS-MODEL server and a selected homology modelling method was used to build a new structure of the degrading enzyme. At the same time, the binding affinities between the novel degrading enzymes and the target fluoroquinolones (represented by the docking scoring function) were evaluated by the molecular docking method. It was found that the novel enzymes can simultaneously improve the binding affinities for the three target fluoroquinolones, and the degradation ability of the six modification schemes was increased by more than 50% at the same time. Among the novel enzymes, the affinity effect of the novel anaerobic enzyme (6-1) with CIP, NOR and OFL was significantly increased, with increases of 129.24%, 165.06% and 169.59%, respectively, followed by the facultative enzyme and aerobic enzyme. In addition, the designed degrading enzymes had certain selectivity for the degradation of the target quinolone. Among the novel enzymes, the binding affinities of the novel anaerobic enzyme (6-3) and CIP, the novel aerobic enzyme (3-6) and NOR, and the novel facultative enzyme (13-6) and OFL were increased by 149.71%, 178.57% and 297.12% respectively. Calculations using the Gaussian09 software revealed that the degradation reaction barrier of the novel degrading enzyme (7-1) and CIP NOR and OFL decreased by 37.65 kcal·mol−1, 6.28 kcal·mol−1 and 6.28 kcal·mol−1, respectively, which would result in efficient degradation of the target fluoroquinolone molecules. By analysing the binding affinity of the degrading enzymes before and after the modification with methanol, it was further speculated that the degradation effect of the modified aerobic degrading enzymes on organic matter was lower than that before the modification, and the increase or decrease in the degradation effect was less than 10%. The mechanism analysis found that the interaction between the modified amino acid residues of the degrading enzymes and the fluoroquinolone molecules increased. The average distance between the amino acid residues and the fluoroquinolone molecules represented a comprehensive affinity effect, and its value was positively correlated with the degradation effect of the novel degrading enzymes.


2020 ◽  
Vol 21 (16) ◽  
pp. 5856
Author(s):  
Davide Gentile ◽  
Virginia Fuochi ◽  
Antonio Rescifina ◽  
Pio Maria Furneri

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a severe global health crisis. In this paper, we used docking and simulation methods to identify potential targets and the mechanism of action of chloroquine (CQ) and hydroxychloroquine (HCQ) against SARS-CoV-2. Our results showed that both CQ and HCQ influenced the functionality of the envelope (E) protein, necessary in the maturation processes of the virus, due to interactions that modify the flexibility of the protein structure. Furthermore, CQ and HCQ also influenced the proofreading and capping of viral RNA in SARS-CoV-2, performed by nsp10/nsp14 and nsp10/nsp16. In particular, HCQ demonstrated a better energy binding with the examined targets compared to CQ, probably due to the hydrogen bonding of the hydroxyl group of HCQ with polar amino acid residues.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-Li Wang ◽  
Guang Hu ◽  
Qian Zhang ◽  
Yu-Xiu Yang ◽  
Qiao-Qiao Li ◽  
...  

Tyrosinase (TYR) is a rate-limiting enzyme in the synthesis of melanin, while direct TYR inhibitors are a class of important clinical antimelanoma drugs. This study established a spectrum-effect relationship analysis method and high-performance liquid chromatography-mass spectrometry (LC-MS) analysis method to screen and identify the active ingredients that inhibited TYR in Salvia miltiorrhiza–Carthamus tinctorius (Danshen–Honghua, DH) herbal pair. Seventeen potential active compounds (peaks) in the extract of DH herbal pair were predicted, and thirteen of them were tentatively identified by LC-MS analysis. Furthermore, TYR inhibitory activities of five pure compounds obtained from the DH herbal pair were validated in the test in which kojic acid served as a positive control drug. Among them, three compounds including protocatechuic aldehyde, hydroxysafflor yellow A, and tanshinone IIA were verified to have high TYR inhibitory activity (IC50 value of 455, 498, and 1214 μM, resp.) and bind to the same amino acid residues in TYR catalytic pocket according to the results of the molecular docking test. However, the other two compounds lithospermic acid and salvianolic acid A had a weak effect on TYR, as they do not combine with the active amino acid residues or act on the active center of TYR. Therefore, the developed methods (spectrum-effect relationship analysis and molecular docking) could be used to effectively screen TYR inhibitors in complex mixtures such as natural products.


2020 ◽  
Author(s):  
Dean Reddick ◽  
Daniel I Udenwobele ◽  
David Datzkiw ◽  
Revanti Mukherjee ◽  
Shailly Varma Shrivastav ◽  
...  

AbstractN-myristoylation refers to the attachment of a 14-carbon fatty acid onto the N-terminal glycine residue of a target protein. The myristoylation reaction, catalyzed by N-myristoyltrasnferase (NMT), is essential for regulating cellular activities such as signal transduction, proliferation, migration, differentiation, and transformation. Although a considerable amount of research is performed on the overexpression of NMT in pathogenic conditions, a fundamental knowledge gap exists on the evolution of NMT and the functional impact of myristoylation for normal cellular development and functions. We performed evolutionary analyses of the NMT gene and found that most non-vertebrates harbor a single nmt gene and all vertebrates examined harbor two genes; nmt1 and nmt2. For the first time, we report that teleosts harbor two copies of nmt1, named nmt1a and nmt1b. We traced the evolutionary history of the chromosomal fragments hosting NMT1 and NMT2 in humans and found that NMT1 and NMT2 trace back to a single vertebrate ancestral chromosome. We also report the presence of putative nuclear localization sequence (NLS) and amino acid residues flanking NLS. The presence of phosphorylatable amino acid residues flanking the NLS suggests that nuclear localization of NMT is regulated by phosphorylation. The nuclear localization of NMT suggest its potential role in gene transcription.


Author(s):  
A. V. Lapko ◽  
E. S. Pustyul’ga ◽  
V. P. Golubovich

Over the past decades, molecular docking has become an increasingly popular tool for the development of new drugs. To search and design new compounds, a detailed study of the interaction of existing complexes of ligands with the target protein is necessary. According to the purpose to identify amino acid residues of the B domain of protein A of Staphylococcus aureus involved in interaction with immunoglobulins G, we studied the interaction mechanisms during the formation of a complex of protein A of the Staphylococcus aureus cell wall and immunoglobulins G by molecular docking. By the means of molecular docking we selected four amino acid residues of Phe132, Gln129, Tyr133 and Phe124, which we can use to construct a peptide analog of the active binding site of protein A with the Fc fragment of immunoglobulins G. The obtained results can serve as starting point for an effective strategy for finding new medicines, in particular, they can be used to further develop biospecific sorbent for the selective removal of immunoglobulins G from human blood.


2020 ◽  
Author(s):  
Ryo Hatada ◽  
Koji Okuwaki ◽  
Yuji Mochizuki ◽  
Kaori Fukuzawa ◽  
Yuto Komeiji ◽  
...  

The worldwide spread of COVID-19 (new coronavirus found in Wuhan in 2019) is an emergent issue to be tackled. In fact, a great amount of works in various fields have been made in rather short period. Here, we report a fragment molecular orbital (FMO) based interaction analysis on a complex between the SARS-CoV-2 main protease (Mpro) and its peptide-like inhibitor N3 (PDB ID: 6LU7). The target inhibitor molecule was segmented into five fragments in order to capture site specific interactions with amino acid residues of the protease. The interaction energies were decomposed into several contributions, and then the characteristics of hydrogen bonding and dispersion stabilization were made clear. Furthermore, the hydration effect was incorporated by the Poisson-Boltzmann (PB) scheme. From the present FMO study, His41, His163, His164, and Glu166 were found to be the most important amino acid residues of Mpro in interacting with the inhibitor, mainly due to hydrogen bonding. A guideline for optimizations of the inhibitor molecule was suggested as well based on the FMO analysis.


2001 ◽  
Vol 48 (1) ◽  
pp. 131-135 ◽  
Author(s):  
R Slusarz ◽  
R Kaźmierkiewicz ◽  
A Giełdoń ◽  
B Lammek ◽  
J Ciarkowski

Molecular docking simulations are now fast developing area of research. In this work we describe an effective procedure of preparation of the receptor-ligand complexes. The amino-acid residues involved in ligand binding were identified and described.


Sign in / Sign up

Export Citation Format

Share Document