Mesenchymal Stromal Cell Transplantation Induces Regeneration of Large and Full-Thickness Cartilage Defect of the Temporomandibular Joint

Cartilage ◽  
2020 ◽  
pp. 194760352092671 ◽  
Author(s):  
Marcos Gomez ◽  
Olga Wittig ◽  
Dylana Diaz-Solano ◽  
José E. Cardier

Objective Cartilage damage (CD) in the temporomandibular joint (TMJ) continues being a major problem in maxillofacial field. Evidence suggests that cellular therapy may be used for repairing CD in the TMJ. Design A murine model of condyle CD (CCD) was generated in the TMJ to evaluate the capacity of mesenchymal stromal cells (MSCs) to induce cartilage regeneration in CCD. A large CCD was surgically created in a condyle head of the TMJ of C57BL/6 mice. Human MSC embedded into preclotted platelet-rich plasma (PRP) were placed on the surface of CCD. As controls, untreated CCD and exposed TMJ condyle (sham) were used. After 6 weeks, animals were sacrificed, and each mandibular condyle was removed and CCD healing was assessed macroscopically and histologically. Results Macroscopic observation of CCD treated with MSC showed the presence of cartilage-like tissue in the CCD site. Histological analysis showed a complete repair of the articular surface with the presence of cartilage-like tissue and subchondral bone filling the CCD area. Chondrocytes were observed into collagen and glycosaminoglycans extracellular matrix filling the repaired tissue. There was no evidence of subchondral bone sclerosis. Untreated CCD showed denudated osteochondral lesions without signs of cartilage repair. Histological analysis showed the absence of tissue formation over the CCD. Conclusions Transplantation of MSC induces regeneration of TMJ-CCD. These results provide strong evidence to use MSC as potential treatment in patients with cartilage lesions in the TMJ.

2018 ◽  
Vol 4 (1) ◽  
pp. e000318 ◽  
Author(s):  
Ahmed Aly Elghawy ◽  
Carlos Sesin ◽  
Michael Rosselli

ObjectiveTo provide a review of osteochondral lesions of the talus, to discuss the evidence of the risks and benefits of platelet-rich plasma (PRP) as a viable treatment option, and to measure the efficacy of PRP using MRI evidence of cartilage regeneration, as well as scales that measure improvement in ‘pain’ and ‘functionality’.Eligibility criteriaStudies that use PRP in either conservative or intraoperative settings to treat osteochondral defects of the talus.ResultsThere are seven studies that compare hyaluronic acid or standard surgical options against PRP in treating osteochondral lesions of the talus. Five studies use PRP as supplemental treatment in intraoperative settings, while two studies use PRP conservatively as intra-articular injections. There were minimal adverse effects. Pain and functionality scores consistently improved in those who underwent PRP treatments over the course of 4 years. MRI showed significant but inconsistent results in chondral regeneration.ConclusionPRP may show clinical benefit in those with osteochondral lesions of the talus in terms of pain and functionality, although chondral regeneration via MRI is inconsistent. Limitations include the small sample sizes in these seven studies, as well as no standardised formula for PRP preparation.Clinical relevanceTo serve as an overview of the literature regarding PRP treatment for osteochondral lesions of the talus and how this modality may improve patient outcomes in pain, functionality and chondral regeneration. A case is reported to complement the subject review.


2021 ◽  
pp. 036354652110525
Author(s):  
Youichi Yasui ◽  
John F. Dankert ◽  
Ichiro Tonogai ◽  
Nathaniel P. Mercer ◽  
Margaret B. Goodale ◽  
...  

Background: Biological adjuvants are used after a musculoskeletal injury to improve healing, decrease inflammation, and restore joint homeostasis. Work on 1 such adjuvant, platelet-rich plasma (PRP), has suggested a positive effect when introduced during cartilage repair. However, it remains unknown whether healing osteochondral injuries benefit from serial PRP injections. Purpose: To evaluate the effects of serial PRP injections versus a single PRP injection on reparative cartilaginous tissue, subchondral bone remodeling, and the expression of inflammatory cytokines in joint synovium. Study Design: Controlled laboratory study. Methods: A total of 48 New Zealand White rabbits were randomly assigned to receive 1 (1P), 2 (2P), or 3 (3P) PRP injections. Cylindrical full-thickness cartilage defects (2.9 × 2.9 mm) with microdrillings (0.6-mm diameter) were created on the medial condyles of both knees. PRP was injected into the right knee after closure (groups 1P, 2P, and 3P), at 2 weeks after surgery (groups 2P and 3P), and at 4 weeks after surgery (group 3P). The left knees did not receive any PRP injections. A total of 6 rabbits in each group were euthanized at 3, 6, and 12 weeks postoperatively. Cartilage repair tissue was assessed using the Goebel macroscopic and modified International Cartilage Regeneration & Joint Preservation Society (ICRS) histological scoring systems. Subchondral bone remodeling was evaluated by micro–computed tomography analysis (micro-CT). Inflammatory cytokine levels were assessed by quantitative polymerase chain reaction. Results: No significant differences were found for the mean macroscopic score between the PRP groups at 12 weeks (control, 6.1 ± 3.3; group 1P, 3.4 ± 2.7; group 2P, 4.2 ± 2.9; group 3P, 0.7 ± 1.5). All PRP groups had a significantly higher mean modified ICRS histological score compared with the control group, but no significant difference was found among the PRP groups. No significant differences were seen in outcomes for the tested micro-CT parameters or cytokine expression levels. Conclusion: Serial PRP injections conferred no apparent advantage over single injections according to evaluations of the macroscopic and histological appearance of the cartilaginous tissue, subchondral bone healing, and inflammatory cytokine expression levels in the synovium. Clinical Relevance: The use of PRP as a biological adjuvant to bone marrow stimulation for osteochondral lesions has the potential to enhance the quality of regenerative cartilaginous tissue. We recommend only a single PRP injection if the use of PRP is indicated by the operating surgeon as an adjuvant therapy for osteochondral lesions.


2020 ◽  
Author(s):  
jing yang ◽  
Yazhen Li ◽  
Ying Liu ◽  
Qiang Zhang ◽  
Qi Zhang ◽  
...  

Abstract Objectives: To: (i) use a mandibular-advancement appliance in rats to investigate the role of the stromal cell-derived factor/ CXC receptor 4 (SDF-1/CXCR4) signaling pathway in temporomandibular joint osteoarthritis (TMJ OA) induced by overloaded functional orthopedics (OFO); (ii) provide a cellular and molecular basis for efficacious treatment of skeletal class-II malocclusion and avoidance of TMJ OA.Method: Male Sprague–Dawley rats (6 weeks) were divided randomly into control+normal saline (NS), EXP+ADM3100 (SDF-1 antagonist), EXP+NS, and control+ADM3100 groups. Changes in articular cartilage and subchondral bone after TMJ OA in these four groups were observed by hematoxylin and eosin (H&E), Immunofluorescence double staining (IDS), Safranin-O staining, immunohistochemical (IHC) staining, real-time polymerase chain reaction, and micro-computed tomography at 2, 4, and 8 weeks.Results: OFO led to increased expression of SDF-1, CXCR4, and matrix metalloproteinase (MMP)13 and decreased expression of collagen II. The thickness of the hypertrophic cartilage layer was reduced at 4 weeks in the EXP+NS group, and damage to subchondral bone was observed at 2 weeks. Using ADM3100 to inhibit SDF-1 signaling could attenuate expression of MMP13, cartilage damage, and osteoblast differentiation. IDS showed that the areas of expression of SDF-1 and OSX in subchondral bone overlapped.Conclusions: Overloaded functional orthopedics (OFO) induced TMJ-OA. The destruction of subchondral bone in TMJ OA caused by OFO occurred before damage to cartilage. SDF-1/CXCR4 may induce the osteogenic differentiation and cause cartilage degradation in TMJ OA caused by OFO.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1550
Author(s):  
Zhiguo Yuan ◽  
Zhuocheng Lyu ◽  
Xin Liu ◽  
Jue Zhang ◽  
You Wang

Cartilage lesions can lead to progressive cartilage degeneration; moreover, they involve the subchondral bone, resulting in osteoarthritis (OA) onset and progression. Bioactive glasses, with the dual function of supporting both bone and cartilage regeneration, have become a promising biomaterial for cartilage/bone engineering applications. This is especially true for those containing therapeutic ions, which act as ion delivery systems and may further promote cartilage repair. In this study, we successfully fabricated Mg-containing bioactive glass nanospheres (Mg-BGNs) and constructed three different scaffolds, DCECM, Mg-BGNs-1/DCECM (1% Mg-BGNs), and Mg-BGNs-2/DCECM (10% Mg-BGNs) scaffold, by incorporating Mg-BGNs into decellularized cartilage extracellular matrix (DCECM). All three scaffolds showed favorable microarchitectural and ion controlled-release properties within the ideal range of pore size for tissue engineering applications. Furthermore, all scaffolds showed excellent biocompatibility and no signs of toxicity. Most importantly, the addition of Mg-BGNs to the DCECM scaffolds significantly promoted cell proliferation and enhanced chondrogenic differentiation induction of mesenchymal stem cells (MSCs) in pellet culture in a dose-dependent manner. Collectively, the multifunctional Mg-BGNs/DCECM composite scaffold not only demonstrated biocompatibility but also a significant chondrogenic response. Our study suggests that the Mg-BGNs/DCECM composite scaffold would be a promising tissue engineering tool for osteochondral lesions, with the ability to simultaneously stimulate articular cartilage and subchondral bone regeneration.


2020 ◽  
Author(s):  
jing yang ◽  
Yazhen Li ◽  
Ying Liu ◽  
Qiang Zhang ◽  
Qi Zhang ◽  
...  

Abstract Objectives To: (i) use a mandibular-advancement appliance in rats to investigate the role of the stromal cell-derived factor/ CXC receptor 4 (SDF-1/CXCR4) signaling pathway in temporomandibular joint osteoarthritis (TMJ OA) induced by overloaded functional orthopedics (OFO); (ii) provide a cellular and molecular basis for efficacious treatment of skeletal class-II malocclusion and avoidance of TMJ OA.Method: Male Sprague–Dawley rats (6 weeks) were divided randomly into control + normal saline (NS), EXP + ADM3100 (SDF-1 antagonist), EXP + NS, and control + ADM3100 groups. Changes in articular cartilage and subchondral bone after TMJ OA in these four groups were observed by hematoxylin and eosin (H&E), Immunofluorescence double staining (IDS), Safranin-O staining, immunohistochemical (IHC) staining, real-time polymerase chain reaction, and micro-computed tomography at 2, 4, and 8 weeks.Results OFO led to increased expression of SDF-1, CXCR4, and matrix metalloproteinase (MMP)13 and decreased expression of collagen II. The thickness of the hypertrophic cartilage layer was reduced at 4 weeks in the EXP + NS group, and damage to subchondral bone was observed at 2 weeks. Using ADM3100 to inhibit SDF-1 signaling could attenuate expression of MMP13, cartilage damage, and osteoblast differentiation. IDS showed that the areas of expression of SDF-1 and OSX in subchondral bone overlapped.Conclusions The destruction of subchondral bone in TMJ OA caused by OFO occurred before damage to cartilage. An increase in expression of the SDF-1/CXCR4 signaling pathway in TMJ OA induced by OFO enabled osteoblasts in subchondral bone to up-regulate expression of SDF-1.


Cartilage ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Christopher A. Looze ◽  
Jason Capo ◽  
Michael K. Ryan ◽  
John P. Begly ◽  
Cary Chapman ◽  
...  

Osteochondral lesions of the talus are common injuries that affect a wide variety of active patients. The majority of these lesions are associated with ankle sprains and fractures though several nontraumatic etiologies have also been recognized. Patients normally present with a history of prior ankle injury and/or instability. In addition to standard ankle radiographs, magnetic resonance imaging and computed tomography are used to characterize the extent of the lesion and involvement of the subchondral bone. Symptomatic nondisplaced lesions can often be treated conservatively within the pediatric population though this treatment is less successful in adults. Bone marrow stimulation techniques such as microfracture have yielded favorable results for the treatment of small (<15 mm) lesions. Osteochondral autograft can be harvested most commonly from the ipsilateral knee and carries the benefit of repairing defects with native hyaline cartilage. Osteochondral allograft transplant is reserved for large cystic lesions that lack subchondral bone integrity. Cell-based repair techniques such as autologous chondrocyte implantation and matrix-associated chondrocyte implantation have been increasingly used in an attempt to repair the lesion with hyaline cartilage though these techniques require adequate subchondral bone. Biological agents such as platelet-rich plasma and bone marrow aspirate have been more recently studied as an adjunct to operative treatment but their use remains theoretical. The present article reviews the current concepts in the evaluation and management of osteochondral lesions of the talus, with a focus on the available surgical treatment options.


1999 ◽  
Vol 12 (03) ◽  
pp. 151-155 ◽  
Author(s):  
L. W. Valentino ◽  
E. M. Gaughan ◽  
D. R. Biller ◽  
R. H. Raub ◽  
J. D. Lillich

The purpose of the study is to document the prevalence of articular surface osteochondrosis lesions in feral horses. Eighty yearling feral horses were used. Radiographic images of the left stifle, both tarsocrural, metatarsophalangeal, metacarpophalangeal joints were taken. Radiographs were examined for the presence of osteochondral fragmentation and abnormal outline of subchondral bone suggestive of osteochondrosis. The prevalence of each lesion was calculated for each joint as well as for overall prevalence within the group, the latter being 6.25%. Typical osteochondrosis lesions were found within the tarsocrural and metatarsophalangeal joints. Based on the difference in prevalence of osteochondrosis between feral and certain domestic horses, management practices and perhaps genetic base may have a greater influence on the development of the disease in horses than trauma alone.


2021 ◽  
Vol 11 (15) ◽  
pp. 7118
Author(s):  
Ermina Hadzic ◽  
Garth Blackler ◽  
Holly Dupuis ◽  
Stephen James Renaud ◽  
Christopher Thomas Appleton ◽  
...  

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease, leading to articular cartilage breakdown, osteophyte formation, and synovitis, caused by an initial joint trauma. Pro-inflammatory cytokines increase catabolic activity and may perpetuate inflammation following joint trauma. Interleukin-15 (IL-15), a pro-inflammatory cytokine, is increased in OA patients, although its roles in PTOA pathophysiology are not well characterized. Here, we utilized Il15 deficient rats to examine the role of IL-15 in PTOA pathogenesis in an injury-induced model. OA was surgically induced in Il15 deficient Holtzman Sprague-Dawley rats and control wild-type rats to compare PTOA progression. Semi-quantitative scoring of the articular cartilage, subchondral bone, osteophyte size, and synovium was performed by two blinded observers. There was no significant difference between Il15 deficient rats and wild-type rats following PTOA-induction across articular cartilage damage, subchondral bone damage, and osteophyte scoring. Similarly, synovitis scoring across six parameters found no significant difference between genetic variants. Overall, IL-15 does not appear to play a key role in the development of structural changes in this surgically-induced rat model of PTOA.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alessandro Casiraghi ◽  
Claudio Galante ◽  
Marco Domenicucci ◽  
Stefano Cattaneo ◽  
Andrea Achille Spreafico ◽  
...  

AbstractThe aim of the present study was to present clinical and radiological outcome of a hip fracture-dislocation of the femoral head treated with biomimetic osteochondral scaffold.An 18-year-old male was admitted to the hospital after a motorcycle-accident. He presented with an obturator hip dislocation with a type IVA femoral head fracture according to Brumback classification system. The patient underwent surgery 5 days after accident. The largest osteochondral fragment was reduced and stabilized with 2 screws, and the small fragments were removed. The residual osteochondral area was replaced by a biomimetic nanostructured osteochondral scaffold. At 1-year follow-up the patient did not complain of hip pain and could walk without limp. At 2-year follow-up he was able to run with no pain and he returned to practice sports. Repeated radiographs and magnetic resonance imaging studies of the hip showed no signs of osteoarthritis or evidence of avascular necrosis. A hyaline-like signal on the surface of the scaffold was observed with restoration of the articular surface and progressive decrease of the subchondral edema.The results of the present study showed that the biomimetic nanostructured osteochondral scaffold could be a promising and safe option for the treatment of traumatic osteochondral lesions of the femoral head.Study Design: Case report.


Sign in / Sign up

Export Citation Format

Share Document