scholarly journals Caspase Inhibition Affects the Expression of Autophagy-Related Molecules in Chondrocytes

Cartilage ◽  
2020 ◽  
pp. 194760352093844
Author(s):  
Barbora Vesela ◽  
Eva Svandova ◽  
Alice Ramesova ◽  
Adela Kratochvilova ◽  
Abigail S. Tucker ◽  
...  

Objective. Caspases, cysteine proteases traditionally associated with apoptosis and inflammation, have recently been identified as important regulators of autophagy and reported within the growth plate, a cartilaginous part of the developing bone. The aim of this research was to identify novel autophagy-related molecules affected by inhibition of pro-apoptotic caspases in chondrocytes. Design. Chondrocyte micromasses derived from mouse limb buds were treated with pharmacological inhibitors of caspases. Autophagy-related gene expression was examined and possible novel molecules were confirmed by real-time polymerase chain reaction and immunocytofluorescence. Individual caspases inhibitors were used to identify the effect of specific caspases. Results. Chondrogenesis accompanied by caspase activation and autophagy progression was confirmed in micromass cultures. Expression of several autophagy-associated genes was significantly altered in the caspases inhibitors treated groups with the most prominent decrease for Pik3cg and increase of Tnfsf10. The results showed the specific pro-apoptotic caspases that play a role in these effects. Importantly, use of caspase inhibitors mimicked changes triggered by an autophagy stimulator, rapamycin, linking loss of caspase activity to an increase in autophagy. Conclusion. Caspase inhibition significantly affects regulation of autophagy-related genes in chondrocytes cultures. Detected markers are of importance in diagnostics and thus the data presented here open new perspectives in the field of cartilage development and degradation.

Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1954-1959 ◽  
Author(s):  
ANDREA CASTERIANO ◽  
UMBERTO MOLINI ◽  
KORNELIA KANDJUMBWA ◽  
SIEGFRIED KHAISEB ◽  
CAROLINE F. FREY ◽  
...  

SUMMARYBovine trichomonosis caused byTritrichomonas foetusis a significant reproductive disease of cattle. Preputial samples were collected using sheath washing technique in bulls in Namibia. Thirty-six trichomonad cultures were characterized using the TaqMan-probe commercial real-time polymerase chain reaction (PCR) diagnostic assay (VetMAX™-Gold Trich Detection Kit) and CYBR real-time PCR assay based on TFR3/4 primers. Diagnostic real-time PCRs and DNA sequencing of the internal transcribed region confirmed presence ofT. foetusin 35 out of 36 samples. Multilocus genotyping using cysteine proteases (CP1, CP2, CP4, CP5, CP6, CP7, CP8, CP9) and malate dehydrogenase (MDH1) gene sequences demonstrate that theT. foetusin Namibia are genetically distinct from those characterized elsewhere. We report the discovery of a novel genotype ofT. foetusin Namibian cattle, distinct from otherT. foetusgenotypes in Europe, South and North America and Australia. We suggest recognition of a ‘Southern African’ genotype ofT. foetus. Identification of the new genotype ofT. foetusdemonstrates the need for wider global sampling to fully understand the diversity and origin ofT. foetuscausing disease in cattle or cats.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4370-4373 ◽  
Author(s):  
Giovanni Cazzaniga ◽  
Sabrina Tosi ◽  
Alessandra Aloisi ◽  
Giovanni Giudici ◽  
Maria Daniotti ◽  
...  

Abstract The Ets variant gene 6 (ETV6/TEL) gene is rearranged in the majority of patients with 12p13 translocations fused to a number of different partners. We present here a case of acute myeloid leukemia M4 with eosinophilia (AML-M4Eo) positive for the CBFb/MYH11 rearrangement and carrying a t(1;12)(q25;p13) that involves the ETV6 gene at 12p13. By 3′rapid amplification of cDNA ends-polymerase chain reaction (3′RACE-PCR), a novel fusion transcript was identified between the ETV6 and the Abelson-related gene (ARG) at 1q25, resulting in a chimeric protein consisting of the HLH oligomerization domain of ETV6 and the SH2, SH3, and protein tyrosine kinase (PTK) domains of ARG. The reciprocal transcript ARG-ETV6 was also detected in the patient RNA by reverse transcriptase-polymerase chain reaction (RT-PCR), although at a lower expression level. The ARG gene encodes for a nonreceptor tyrosine kinase characterized by high homology with c-Abl in the TK, SH2, and SH3 domains. This is the first report on ARGinvolvement in a human malignancy.


Author(s):  
Georgia Bateman ◽  
Benjamin Hill ◽  
Ryan Knight ◽  
Dave Boucher

Innate immune responses are tightly regulated by various pathways to control infections and maintain homeostasis. One of these pathways, the inflammasome pathway, activates a family of cysteine proteases called inflammatory caspases. They orchestrate an immune response by cleaving specific cellular substrates. Canonical inflammasomes activate caspase-1, whereas non-canonical inflammasomes activate caspase-4 and -5 in humans and caspase-11 in mice. Caspases are highly specific enzymes that select their substrates through diverse mechanisms. During inflammation, caspase activity is responsible for the secretion of inflammatory cytokines and the execution of a form of lytic and inflammatory cell death called pyroptosis. This review aims to bring together our current knowledge of the biochemical processes behind inflammatory caspase activation, substrate specificity, and substrate signalling.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4370-4373 ◽  
Author(s):  
Giovanni Cazzaniga ◽  
Sabrina Tosi ◽  
Alessandra Aloisi ◽  
Giovanni Giudici ◽  
Maria Daniotti ◽  
...  

The Ets variant gene 6 (ETV6/TEL) gene is rearranged in the majority of patients with 12p13 translocations fused to a number of different partners. We present here a case of acute myeloid leukemia M4 with eosinophilia (AML-M4Eo) positive for the CBFb/MYH11 rearrangement and carrying a t(1;12)(q25;p13) that involves the ETV6 gene at 12p13. By 3′rapid amplification of cDNA ends-polymerase chain reaction (3′RACE-PCR), a novel fusion transcript was identified between the ETV6 and the Abelson-related gene (ARG) at 1q25, resulting in a chimeric protein consisting of the HLH oligomerization domain of ETV6 and the SH2, SH3, and protein tyrosine kinase (PTK) domains of ARG. The reciprocal transcript ARG-ETV6 was also detected in the patient RNA by reverse transcriptase-polymerase chain reaction (RT-PCR), although at a lower expression level. The ARG gene encodes for a nonreceptor tyrosine kinase characterized by high homology with c-Abl in the TK, SH2, and SH3 domains. This is the first report on ARGinvolvement in a human malignancy.


2019 ◽  
Vol 34 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Yang Peng ◽  
Wei-jie Guan ◽  
Zhen-chao Zhu ◽  
Kai Sen Tan ◽  
Zhuo Chen ◽  
...  

Background Gene expression patterns (particularly, cilia-associated genes) of nasal mucosa, the first-line defense system, in allergic rhinitis (AR) are not well understood. Objective We sought to screen for AR-associated genes in inferior turbinate (IT) from patients with AR, and to validate the expression of common cilia-related genes and ciliary shedding. Methods Prime View™ Human Gene Expression Array, which consisted of more than 530 000 probes covering more than 36 000 transcripts and variants, was employed to compare individual gene expression of ITs from control subjects (n = 11) and patients with AR (n = 19). Gene ontology (GO) analysis was performed with Cytoscape software. Eight of the common cilia-related genes were validated with quantitative polymerase chain reaction. We applied a semiquantitative scoring system for immunofluorescence assay to demonstrate ciliary shedding in 5 areas per paraffin section, with individual sections being scored between 0 (normal ciliary distribution) and 1 (ciliary shedding). Results Compared with control subjects, 160 (38 upregulated and 122 downregulated) genes were differentially expressed for at least 2 folds (all P < .05) in AR. Seven GO categories were significantly enriched, 4 of which were related to cilium assembly and motility. Quantitative polymerase chain reaction validated the predicted direction of change for common cilia-related gene expression. The ciliary distribution score was significantly higher (more prominent ciliary shedding) in AR than in controls ( P < .05). Conclusion The significant aberrant cilia-related gene expression, revealed by microarray assays, might be the critical driver of AR where ciliary shedding is prominent.


2020 ◽  
Vol 100 (1) ◽  
pp. 85-92
Author(s):  
Yueyun Ding ◽  
Chong Ding ◽  
Xudong Wu ◽  
Chaodong Wu ◽  
Li Qian ◽  
...  

Leukemia inhibitory factor (LIF) is an important productivity-related gene in pigs. We found two polymorphisms — g.6646C>T and g.6988C>T — in exon 3 of LIF in pigs by using DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism. Three genotypes were obtained and associated with litter size traits in Anqing Six-end-white (AQ), Wei (W), Wannan Black (WNB), and Large White (LW) pigs. At locus g.6646C>T, the g.6646C allele frequency variation was 0.6869 (AQ), 0.7473 (W), 1 (WNB), and 0.6852 (LW). In AQ pigs, sows with the TT genotype had higher total number of piglets born (TNB) and number of piglets born alive (NBA) in the first parity and multiparities (P < 0.01). In W and LW pigs, sows with the CC genotype had higher TNB and NBA in multiparities (P < 0.01). At locus g.6988C>T, the g.6988C allele frequency variation was 1 (AQ), 0.6154 (W), 1 (WNB), and 0.6667 (LW). The CC genotype significantly differed from CT or TT genotypes (P < 0.01) for TNB and NBA in W and LW pigs. Thus, LIF was shown to have a significant influence on litter size. Therefore, g.6646C>T and g.6988C>T loci of LIF could be potential marker-assisted selection tools for improving litter size in pig production.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


Sign in / Sign up

Export Citation Format

Share Document