scholarly journals Proteomic analysis of pulmonary arterial hypertension

2021 ◽  
Vol 12 ◽  
pp. 204062232110473
Author(s):  
Xiaohan Qin ◽  
Tianhao Li ◽  
Wei Sun ◽  
Xiaoxiao Guo ◽  
Quan Fang

Pulmonary arterial hypertension (PAH) is a rare but fatal cardiovascular disorder with high morbidity and mortality. Diagnosis and treatment of this disease at an early stage would greatly improve outcomes. The molecular indicators of PAH are mostly nonspecific, and diagnostic and prognostic biomarkers are urgently needed. A more comprehensive understanding of the molecular mechanisms underlying this complex disease is crucial for the development of new and more effective therapeutics to improve patient outcomes. In this article, we review published literature on proteomic biomarkers and underlying molecular mechanisms in PAH and their value for disease management, aiming to deepen our understanding of the disease and, ultimately, pave the way for clinical application.

2010 ◽  
Vol 298 (4) ◽  
pp. L483-L491 ◽  
Author(s):  
Mirjam E. van Albada ◽  
Beatrijs Bartelds ◽  
Hans Wijnberg ◽  
Saffloer Mohaupt ◽  
Michael G. Dickinson ◽  
...  

Pulmonary arterial hypertension (PAH) is a pulmonary angioproliferative disease with high morbidity and mortality, characterized by a typical pattern of pulmonary vascular remodeling including neointimal lesions. In congenital heart disease, increased pulmonary blood flow has appeared to be a key mediator in the development of these characteristic lesions, but the molecular mechanisms underlying the pulmonary vascular lesions are largely unknown. We employed a rat model of flow-associated PAH, which induced specific pulmonary neointimal lesions. We identified gene expression profiles in rats specifically related to the addition of increased pulmonary blood flow to monocrotaline and the associated occurrence of neointimal lesions. Increased pulmonary blood flow induced the expression of the transcription factors activating transcription factor-3 (ATF3) and early growth response factor-1 (EGR-1), for which presence was confirmed in neointimal lesions. Monocrotaline alone induced increased numbers of activated mast cells and their products. We further identified molecular pathways that may be involved in treatment with the prostacyclin analog iloprost, a vasoactive compound with clinically beneficial effects in patients with PAH, which were similar to pathways described in samples from patient studies. These pathways, associated with the development of angioproliferative lesions as well as with the response to therapy in PAH, may provide new therapeutic targets.


Author(s):  
Marcelle Paula-Ribeiro ◽  
Indyanara C. Ribeiro ◽  
Liliane C. Aranda ◽  
Talita M. Silva ◽  
Camila M. Costa ◽  
...  

The baroreflex integrity in early-stage pulmonary arterial hypertension (PAH) remains uninvestigated. A potential baroreflex impairment could be functionally relevant and possibly mediated by enhanced peripheral chemoreflex activity. Thus, we investigated 1) the cardiac baroreflex in non-hypoxemic PAH; 2) the association between baroreflex indexes and peak aerobic capacity (i.e., V̇O2peak); and 3) the peripheral chemoreflex contribution to the cardiac baroreflex. Nineteen patients and 13 age- and sex-matched healthy adults (HA) randomly inhaled either 100% O2 (peripheral chemoreceptors inhibition) or 21% O2 (control session), while at rest and during a repeated sit-to-stand maneuver. Beat-by-beat analysis of R-R intervals and systolic blood pressure provided indexes of cardiac baroreflex sensitivity (cBRS) and effectiveness (cBEI). The PAH group had lower cBEIALL at rest (mean ± SD: PAH = 0.5 ± 0.2 vs HA = 0.7 ± 0.1 a.u., P = 0.02) and lower cBRSALL (PAH = 6.8 ± 7.0 vs HA = 9.7 ± 5.0 ms mmHg-1, P < 0.01) and cBEIALL (PAH = 0.4 ± 0.2 vs HA= 0.6 ± 0.1 a.u., P < 0.01) during the sit-to-stand maneuver versus the HA group. The cBEI during the sit-to-stand maneuver was independently correlated to V̇O2peak (partial r = 0.45, P < 0.01). Hyperoxia increased cBRS and cBEI similarly in both groups at rest and during the sit-to-stand maneuver. Therefore, cardiac baroreflex dysfunction was observed under spontaneous and, most notably, provoked blood pressure fluctuations in non-hypoxemic PAH, was not influenced by the peripheral chemoreflex, and was associated with lower V̇O2peak suggesting it could be functionally relevant.


Author(s):  
Peiliang Wu ◽  
Xiaona Xie ◽  
Mayun Chen ◽  
Junwei Sun ◽  
Luqiong Cai ◽  
...  

Background and Objective: Qishen Yiqi formula (QSYQ) is used to treat cardiovascular disease in the clinical practice of traditional Chinese medicine. However, few studies have explored whether QSYQ affects pulmonary arterial hypertension (PAH), and the mechanisms of action and molecular targets of QSYQ for the treatment of PAH are unclear. A bioinformatics/network topology-based strategy was used to identify the bioactive ingredients, putative targets, and molecular mechanisms of QSYQ in PAH. Methods: A network pharmacology-based strategy was employed by integrating active component gathering, target prediction, PAH gene collection, network topology, and gene enrichment analysis to systematically explore the multicomponent synergistic mechanisms. Results: In total, 107 bioactive ingredients of QSYQ and 228 ingredient targets were identified. Moreover, 234 PAH-related differentially expressed genes with a |fold change| >2 and an adjusted P value < 0.005 were identified between the PAH patient and control groups, and 266 therapeutic targets were identified. The pathway enrichment analysis indicated that 85 pathways, including the PI3K-Akt, MAPK, and HIF-1 signaling pathways, were significantly enriched. TP53 was the core target gene, and 7 other top genes (MAPK1, RELA, NFKB1, CDKN1A, AKT1, MYC, and MDM2) were the key genes in the gene-pathway network based on the effects of QSYQ on PAH. Conclusion: An integrative investigation based on network pharmacology may elucidate the multicomponent synergistic mechanisms of QSYQ in PAH and lay a foundation for further animal experiments, human clinical trials and rational clinical applications of QSYQ.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
BIN LIU ◽  
Jingbo Dai ◽  
Li Shuai ◽  
Dan Yi ◽  
Youyang Zhao ◽  
...  

Introduction: Pulmonary arterial hypertension (PAH) is a disaster disease characterized by obliterative vascular remodeling and persistent increase of vascular resistance, leading to right heart failure and premature death. Understanding the cellular and molecular mechanisms will help develop novel therapeutic approaches for PAH patients. Hypothesis: We hypothesis that endothelial plasticity or distinct cell populations are critical for obstructive vascular remodeling in the pathogenesis of PAH. Methods: Here we applied single-cell RNA sequencing (ScRNA-seq) to profile the pulmonary cells in a severe mouse model ( Egln1 Tie2Cre mice) of PAH. Human hPAEC from idiopathic PAH patients and healthy donors were used to measure FABP4 and FABP5 expression. siRNA mediated knockdown of FABP4 and FABP5 was performed to study cell proliferation and apoptosis. Mice with Fabp4 and Fabp5 deletion ( Fabp45 -/- ) and wild type (WT) mice were incubated with hypoxia (10% O 2 ) to induced PAH. Egln1 Tie2Cre mice were bred with Fabp45 -/- mice to generate Egln1 Tie2Cre / Fabp45 -/- mice. Results: We identified five distinct EC subpopulations in both WT and Egln1 Tie2Cre mice via scRNA-seq. Unexpectedly, the number of Cluster (EC2, 49.8%) was markedly increased in Egln1 Tie2Cre lung compared with WT lung (2.8%). EC2 cluster (mainly from Egln1 Tie2Cre lung) was characterized by little expression of Tmem100 , Cldn5 , Tspan7 , Calcrl and Foxf1 and high expression of Fabp4, Cdh13, Sparl1 and Fabp5 . Fatty acid-binding protein (FABP) 4 and FABP5 (FABP4-5) were highly induced in PAECs from IPAH patients. Knockdown of FABP4-5 reduced EC proliferation and starvation-induced Caspase 3/7 activity. Fabp45 -/- mice were protected from hypoxia-induced PAH compared to WT mice. Moreover, Egln1 Tie2Cre / Fabp45 -/- mice also exhibited a reduction of RVSP and RV hypertrophy compared to Egln1 Tie2Cre mice. Conclusions: ScRNA-seq analysis identifies a unique endothelial population (FABP4 + TMEM100 - ) highly enriched in the lung of severe PAH mice. Knockdown of FABP4-5 reduces EC proliferation starvation-induced injury. Genetic deletion of FABP4-5 protects from hypoxia and Egln1 deficiency-induced PAH in mice.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Katie Y Hood ◽  
Augusto C Montezano ◽  
Margaret R MacLean ◽  
Rhian M Touyz

Women develop pulmonary arterial hypertension (PAH) more frequently than men. This may relate, in part, to metabolism of 17β-estradiol (E2), leading to formation of the deleterious metabolite, 16α-hydroxyestrone (16α OHE1), which plays a role in the remodelling of pulmonary arteries. Molecular mechanisms whereby 16αOHE1 influences PASMC remodelling are unclear but ROS may be important, since oxidative stress has been implicated in the pathogenesis of PAH. We hypothesised that E2 and 16αOHE1 leads to Nox-induced ROS production, which promotes PASMC damage. Cultured PASMCs were stimulated with either E2 (1nM) or 16αOHE1 (1nM) in the presence/absence of EHT1864 (100μM, Rac1 inhibitor) or tempol (antioxidant; 10μM). ROS production was assessed by chemiluminescence (O2-) and Amplex Red (H2O2). Antioxidants (thioredoxin, peroxiredoxin 1 and NQ01), regulators of Nrf2 (BACH1, Nrf2) and, marker of cell growth (PCNA) were determined by immunoblotting. E2 increased O2- production at 4h (219 ± 30% vs vehicle; p<0.05), an effect blocked by EHT1864 and tempol. E2 also increased H2O2 generation (152 ± 4%; p<0.05). Thioredoxin, NQ01 and peroxiredoxin1 (71 ± 6%; 78 ± 9%; 69 ± 8%; p<0.05 respectively) levels were decreased by E2 as was PCNA expression (72 ± 2%; p<0.05). 16αOHE1 exhibited a rapid (5 min) and exaggerated increase in ROS production (355 ± 41%; p<0.05), blocked by tempol and EHT1864. This was associated with an increase in Nox4 expression (139 ± 11% vs vehicle, p<0.05). 16αOHE1 increased BACH1, (129 ± 3%; p<0.05), a competitor of Nrf2, which was decreased (92 ± 2%). In contrast, thioredoxin expression was increased by 16aOHE1 (154 ± 22%; p<0.05). PCNA (150 ± 5%) expression was also increased after exposure to 16αOHE1. In conclusion, E2 and 16αOHE1 have differential effects on redox processes associated with PASMC growth. Whereas E2 stimulates ROS production in a slow and sustained manner without effect on cell growth, 16αOHE1 upregulates Nox4 with associated rapid increase in ROS generation and downregulation of antioxidant systems, affecting proliferation. Our findings suggest that E2 -derived metabolites may promote a pro-proliferative PASMC phenotype through Nox4-derived ROS generation. These deleterious effects may impact on vascular remodeling in PAH.


2019 ◽  
Vol 9 (1) ◽  
pp. 204589401983489 ◽  
Author(s):  
Meghan M. Cirulis ◽  
John J. Ryan ◽  
Stephen L. Archer

Arrhythmias are increasingly recognized as serious, end-stage complications of pre-capillary pulmonary hypertension, including pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Although arrhythmias contribute to symptoms, morbidity, in-hospital mortality, and possibly sudden death in PAH/CTEPH, there remains a paucity of epidemiologic, pathophysiologic, and outcome data to guide management of these patients. This review summarizes the most current evidence on the topic: from the molecular mechanisms driving arrhythmia in the hypertrophied or failing right heart, to the clinical aspects of epidemiology, diagnosis, and management.


2021 ◽  
Vol 5 (10) ◽  
Author(s):  
Ana Laura Mori ◽  
Andrea Rodríguez ◽  
Juan Alberto Gagliardi ◽  
Alejandro Stewart Harris

Abstract Background Idiopathic pulmonary arterial hypertension is associated with high morbidity and mortality. In recent years, the use of targeted therapies has led to an improvement in prognosis. Prostacyclin analogues treprostinil and epoprostenol require continuous subcutaneous or intravenous infusion and are generally administered in a stepwise approach. However, there are no clear recommendations for transition in high-risk patients requiring high doses of prostacyclin analogues. Case summary In this report, we describe the case of a 20-year-old woman under combined treatment with sildenafil, macitentan, and treprostinil who required transition from subcutaneous treprostinil therapy to intravenous epoprostenol due to erratic drug absorption and functional class progression. The transition was performed over 48 h in a stepwise approach reducing treprostinil dose 4 ng/kg/min every 3 h while increasing epoprostenol infusion 2 ng/kg/min until achieving a maintenance dose of 32 ng/kg/min. There were no side effects requiring changes in the infusion rate. Discussion Patients with advanced pulmonary arterial hypertension may necessitate switching from subcutaneous treprostinil to epoprostenol. Although many protocols have been used to date, there are no guidelines to direct this process safely. This 48-h scheme based on the pharmacokinetic properties of each drug was successful and well-tolerated.


Author(s):  
Thibault R. H. Jouen-Tachoire ◽  
Stephen J. Tucker ◽  
Paolo Tammaro

Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document