scholarly journals Elucidation of the mechanisms and molecular targets of Qishen Yiqi formula for the treatment of pulmonary arterial hypertension using a bioinformatics/network topology-based strategy

Author(s):  
Peiliang Wu ◽  
Xiaona Xie ◽  
Mayun Chen ◽  
Junwei Sun ◽  
Luqiong Cai ◽  
...  

Background and Objective: Qishen Yiqi formula (QSYQ) is used to treat cardiovascular disease in the clinical practice of traditional Chinese medicine. However, few studies have explored whether QSYQ affects pulmonary arterial hypertension (PAH), and the mechanisms of action and molecular targets of QSYQ for the treatment of PAH are unclear. A bioinformatics/network topology-based strategy was used to identify the bioactive ingredients, putative targets, and molecular mechanisms of QSYQ in PAH. Methods: A network pharmacology-based strategy was employed by integrating active component gathering, target prediction, PAH gene collection, network topology, and gene enrichment analysis to systematically explore the multicomponent synergistic mechanisms. Results: In total, 107 bioactive ingredients of QSYQ and 228 ingredient targets were identified. Moreover, 234 PAH-related differentially expressed genes with a |fold change| >2 and an adjusted P value < 0.005 were identified between the PAH patient and control groups, and 266 therapeutic targets were identified. The pathway enrichment analysis indicated that 85 pathways, including the PI3K-Akt, MAPK, and HIF-1 signaling pathways, were significantly enriched. TP53 was the core target gene, and 7 other top genes (MAPK1, RELA, NFKB1, CDKN1A, AKT1, MYC, and MDM2) were the key genes in the gene-pathway network based on the effects of QSYQ on PAH. Conclusion: An integrative investigation based on network pharmacology may elucidate the multicomponent synergistic mechanisms of QSYQ in PAH and lay a foundation for further animal experiments, human clinical trials and rational clinical applications of QSYQ.

2020 ◽  
Author(s):  
Na Liu ◽  
Yunhong Zeng ◽  
Ting Huang ◽  
Wanyun Zuo ◽  
Yunbin Xiao ◽  
...  

Abstract BackgroundDespite its functional importance in various fundamental bioprocesses, studies of N6-methyladenosine (m6A) in the pulmonary arterial hypertension (PAH) are lacking. Here we studied the potential relevance of m6A RNA methylation and immune response in PAH development.MethodsWe constructed a monocrotaline (MCT) induced PAH rat model and performed Methylated RNA immunoprecipitation sequencing (MeRIP-Seq). The 18 idiopathic PAH (IPAH) microarray data obtained from the GEO database was used to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). CIBERSORT was used to investigate the effect of m6A methylation on immune cell infiltration during PAH.ResultsA differential pattern of m6A abundance, mainly up-methylation, was observed in the lung tissues of rats with MCT induced PAH. By WGCNA, multi-list pathway enrichment analysis and protein-protein interaction (PPI) analysis, we found that m6A methylation modification may play important roles in mediating immune response during PAH. CYBERSORT algorithm indicated that the m6A methylation can drive monocyte to form M1 macrophage, which may be mediated by CCR5 and CXCL9.ConclusionCollectively, m6A landscape is altered in PAH. We summarize newly discovered m6A in controlling immune response, which caused activation of M1 macrophage during PAH. It’s provided a novel insight into the therapeutic mechanisms of PAH.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chan Li ◽  
Zeyu Zhang ◽  
Qian Xu ◽  
Ruizheng Shi

Introduction. Idiopathic pulmonary arterial hypertension (IPAH) is a severe cardiopulmonary disease with a relatively low survival rate. Moreover, the pathogenesis of IPAH has not been fully recognized. Thus, comprehensive analyses of miRNA-mRNA network and potential drugs in IPAH are urgent requirements. Methods. Microarray datasets of mRNA and microRNA (miRNA) in IPAH were searched and downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMIs) were identified. Then, the DEMI-DEG network was conducted with associated comprehensive analyses including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis, while potential drugs targeting hub genes were investigated using L1000 platform. Results. 30 DEGs and 6 DEMIs were identified in the lung tissue of IPAH. GO and KEGG pathway analyses revealed that these DEGs were mostly enriched in antimicrobial humoral response and African trypanosomiasis, respectively. The DEMI-DEG network was conducted subsequently with 4 DEMIs (hsa-miR-34b-5p, hsa-miR-26b-5p, hsa-miR-205-5p, and hsa-miR-199a-3p) and 16 DEGs, among which 5 DEGs (AQP9, SPP1, END1, VCAM1, and SAA1) were included in the top 10 hub genes of the PPI network. Nimodipine was identified with the highest CMap connectivity score in L1000 platform. Conclusion. Our study conducted a miRNA-mRNA network and identified 4 miRNAs as well as 5 mRNAs which may play important roles in the pathogenesis of IPAH. Moreover, we provided a new insight for future therapies by predicting potential drugs targeting hub genes.


Author(s):  
Wei Wang ◽  
Zhenhong Jiang ◽  
Dandan Zhang ◽  
Linghua Fu ◽  
Rong Wan ◽  
...  

Pulmonary arterial hypertension (PAH) is a severe cardiovascular disorder with high mortality. Multiple clinical diseases can induce PAH, but the underlying molecular mechanisms shared in PAHs associated with different diseases remain unclear. The aim of this study is to explore the key candidate genes and pathways in PAH associated with congenital heart disease (CHD-PAH), PAH associated with connective tissue disease (CTD-PAH), and idiopathic PAH (IPAH). We performed differential expression analysis based on a public microarray dataset GSE113439 and identified 1,442 differentially expressed genes, of which 80.3% were upregulated. Subsequently, both pathway enrichment analysis and protein–protein interaction network analysis revealed that the “Cell cycle” and “DNA damage” processes were significantly enriched in PAH. The expression of seven upregulated candidate genes (EIF2AK2, TOPBP1, CDC5L, DHX15, and CUL1–3) and three downregulated candidate genes (DLL4, EGFL7, and ACE) were validated by qRT-PCR. Furthermore, cell cycle-related genes Cul1 and Cul2 were identified in pulmonary arterial endothelial cells (PAECs) in vitro. The result revealed an increased expression of Cul2 in PAECs after hypoxic treatment. Silencing Cul2 could inhibit overproliferation and migration of PAECs in hypoxia. Taken together, according to bioinformatic analyses, our work revealed that “Cell cycle” and “DNA damage” process-related genes and pathways were significantly dysregulated expressed in PAHs associated with three different diseases. This commonality in molecular discovery might broaden the genetic perspective and understanding of PAH. Besides, silencing Cul2 showed a protective effect in PAECs in hypoxia. The results may provide new treatment targets in multiple diseases induced by PAH.


2021 ◽  
Vol 18 (6) ◽  
pp. 7619-7630
Author(s):  
Fan Zhang ◽  
◽  
Hongtao Liu ◽  

<abstract> <p>Pulmonary arterial hypertension (PAH) is a life-threatening illness and ferroptosis is an iron-dependent form of regulated cell death, driven by the accumulation of lipid peroxides to levels that are sufficient to trigger cell death. However, only few studies have examined PAH-associated ferroptosis. In the present study, lung samples mRNA expression profiles (derived from 15 patients with PAH and 11 normal controls) were downloaded from a public database, and 514 differentially expressed genes (DEGs) were identified using the Wilcoxon rank-sum test and weighted gene correlation network analyses. These DEGs were screened for ferroptosis-associated genes using the FerrDb database: eight ferroptosis-associated genes were identified. Finally, the construction of gene-microRNA (miRNA) and gene-transcription factor (TF) networks, in conjunction with gene ontology and biological pathway enrichment analysis, were used to inform hypotheses regarding the molecular mechanisms underlying PAH-associated ferroptosis. Ferroptosis-associated genes were largely involved in oxidative stress responses and could be regulated by several identified miRNAs and TFs. This suggests the existence of modulatable pathways that are potentially involved in PAH-associated ferroptosis. Our findings provide novel directions for targeted therapy of PAH in regard to ferroptosis. These findings may ultimately help improve the therapeutic outcomes of PAH.</p> </abstract>


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
BIN LIU ◽  
Jingbo Dai ◽  
Li Shuai ◽  
Dan Yi ◽  
Youyang Zhao ◽  
...  

Introduction: Pulmonary arterial hypertension (PAH) is a disaster disease characterized by obliterative vascular remodeling and persistent increase of vascular resistance, leading to right heart failure and premature death. Understanding the cellular and molecular mechanisms will help develop novel therapeutic approaches for PAH patients. Hypothesis: We hypothesis that endothelial plasticity or distinct cell populations are critical for obstructive vascular remodeling in the pathogenesis of PAH. Methods: Here we applied single-cell RNA sequencing (ScRNA-seq) to profile the pulmonary cells in a severe mouse model ( Egln1 Tie2Cre mice) of PAH. Human hPAEC from idiopathic PAH patients and healthy donors were used to measure FABP4 and FABP5 expression. siRNA mediated knockdown of FABP4 and FABP5 was performed to study cell proliferation and apoptosis. Mice with Fabp4 and Fabp5 deletion ( Fabp45 -/- ) and wild type (WT) mice were incubated with hypoxia (10% O 2 ) to induced PAH. Egln1 Tie2Cre mice were bred with Fabp45 -/- mice to generate Egln1 Tie2Cre / Fabp45 -/- mice. Results: We identified five distinct EC subpopulations in both WT and Egln1 Tie2Cre mice via scRNA-seq. Unexpectedly, the number of Cluster (EC2, 49.8%) was markedly increased in Egln1 Tie2Cre lung compared with WT lung (2.8%). EC2 cluster (mainly from Egln1 Tie2Cre lung) was characterized by little expression of Tmem100 , Cldn5 , Tspan7 , Calcrl and Foxf1 and high expression of Fabp4, Cdh13, Sparl1 and Fabp5 . Fatty acid-binding protein (FABP) 4 and FABP5 (FABP4-5) were highly induced in PAECs from IPAH patients. Knockdown of FABP4-5 reduced EC proliferation and starvation-induced Caspase 3/7 activity. Fabp45 -/- mice were protected from hypoxia-induced PAH compared to WT mice. Moreover, Egln1 Tie2Cre / Fabp45 -/- mice also exhibited a reduction of RVSP and RV hypertrophy compared to Egln1 Tie2Cre mice. Conclusions: ScRNA-seq analysis identifies a unique endothelial population (FABP4 + TMEM100 - ) highly enriched in the lung of severe PAH mice. Knockdown of FABP4-5 reduces EC proliferation starvation-induced injury. Genetic deletion of FABP4-5 protects from hypoxia and Egln1 deficiency-induced PAH in mice.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Katie Y Hood ◽  
Augusto C Montezano ◽  
Margaret R MacLean ◽  
Rhian M Touyz

Women develop pulmonary arterial hypertension (PAH) more frequently than men. This may relate, in part, to metabolism of 17β-estradiol (E2), leading to formation of the deleterious metabolite, 16α-hydroxyestrone (16α OHE1), which plays a role in the remodelling of pulmonary arteries. Molecular mechanisms whereby 16αOHE1 influences PASMC remodelling are unclear but ROS may be important, since oxidative stress has been implicated in the pathogenesis of PAH. We hypothesised that E2 and 16αOHE1 leads to Nox-induced ROS production, which promotes PASMC damage. Cultured PASMCs were stimulated with either E2 (1nM) or 16αOHE1 (1nM) in the presence/absence of EHT1864 (100μM, Rac1 inhibitor) or tempol (antioxidant; 10μM). ROS production was assessed by chemiluminescence (O2-) and Amplex Red (H2O2). Antioxidants (thioredoxin, peroxiredoxin 1 and NQ01), regulators of Nrf2 (BACH1, Nrf2) and, marker of cell growth (PCNA) were determined by immunoblotting. E2 increased O2- production at 4h (219 ± 30% vs vehicle; p<0.05), an effect blocked by EHT1864 and tempol. E2 also increased H2O2 generation (152 ± 4%; p<0.05). Thioredoxin, NQ01 and peroxiredoxin1 (71 ± 6%; 78 ± 9%; 69 ± 8%; p<0.05 respectively) levels were decreased by E2 as was PCNA expression (72 ± 2%; p<0.05). 16αOHE1 exhibited a rapid (5 min) and exaggerated increase in ROS production (355 ± 41%; p<0.05), blocked by tempol and EHT1864. This was associated with an increase in Nox4 expression (139 ± 11% vs vehicle, p<0.05). 16αOHE1 increased BACH1, (129 ± 3%; p<0.05), a competitor of Nrf2, which was decreased (92 ± 2%). In contrast, thioredoxin expression was increased by 16aOHE1 (154 ± 22%; p<0.05). PCNA (150 ± 5%) expression was also increased after exposure to 16αOHE1. In conclusion, E2 and 16αOHE1 have differential effects on redox processes associated with PASMC growth. Whereas E2 stimulates ROS production in a slow and sustained manner without effect on cell growth, 16αOHE1 upregulates Nox4 with associated rapid increase in ROS generation and downregulation of antioxidant systems, affecting proliferation. Our findings suggest that E2 -derived metabolites may promote a pro-proliferative PASMC phenotype through Nox4-derived ROS generation. These deleterious effects may impact on vascular remodeling in PAH.


2019 ◽  
Vol 9 (1) ◽  
pp. 204589401983489 ◽  
Author(s):  
Meghan M. Cirulis ◽  
John J. Ryan ◽  
Stephen L. Archer

Arrhythmias are increasingly recognized as serious, end-stage complications of pre-capillary pulmonary hypertension, including pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Although arrhythmias contribute to symptoms, morbidity, in-hospital mortality, and possibly sudden death in PAH/CTEPH, there remains a paucity of epidemiologic, pathophysiologic, and outcome data to guide management of these patients. This review summarizes the most current evidence on the topic: from the molecular mechanisms driving arrhythmia in the hypertrophied or failing right heart, to the clinical aspects of epidemiology, diagnosis, and management.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xin Shen ◽  
Rui Yang ◽  
Jianpeng An ◽  
Xia Zhong

Prunella vulgaris (PV) has a long history of application in traditional Chinese and Western medicine as a remedy for the treatment of subacute thyroiditis (SAT). This study applied network pharmacology to elucidate the mechanism of the effects of PV against SAT. Components of the potential therapeutic targets of PV and SAT-related targets were retrieved from databases. To construct a protein-protein interaction (PPI) network, the intersection of SAT-related targets and PV-related targets was input into the STRING platform. Gene ontology (GO) analysis and KEGG pathway enrichment analysis were carried out using the DAVID database. Networks were constructed by Cytoscape for visualization. The results showed that a total of 11 compounds were identified according to the pharmacokinetic parameters of ADME. A total of 126 PV-related targets and 2207 SAT-related targets were collected, and 83 overlapping targets were subsequently obtained. The results of the KEGG pathway and compound-target-pathway (C-T-P) network analysis suggested that the anti-SAT effect of PV mainly occurs through quercetin, luteolin, kaempferol, and beta-sitosterol and is most closely associated with their regulation of inflammation and apoptosis by targeting the PIK3CG, MAPK1, MAPK14, TNF, and PTGS2 proteins and the PI3K-Akt and TNF signaling pathways. The study demonstrated that quercetin, luteolin, kaempferol, and beta-sitosterol in PV may play a major role in the treatment of SAT, which was associated with the regulation of inflammation and apoptosis, by targeting the PI3K-Akt and TNF signaling pathways.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Sha Di ◽  
Lin Han ◽  
Qing Wang ◽  
Xinkui Liu ◽  
Yingying Yang ◽  
...  

Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.


2010 ◽  
Vol 298 (4) ◽  
pp. L483-L491 ◽  
Author(s):  
Mirjam E. van Albada ◽  
Beatrijs Bartelds ◽  
Hans Wijnberg ◽  
Saffloer Mohaupt ◽  
Michael G. Dickinson ◽  
...  

Pulmonary arterial hypertension (PAH) is a pulmonary angioproliferative disease with high morbidity and mortality, characterized by a typical pattern of pulmonary vascular remodeling including neointimal lesions. In congenital heart disease, increased pulmonary blood flow has appeared to be a key mediator in the development of these characteristic lesions, but the molecular mechanisms underlying the pulmonary vascular lesions are largely unknown. We employed a rat model of flow-associated PAH, which induced specific pulmonary neointimal lesions. We identified gene expression profiles in rats specifically related to the addition of increased pulmonary blood flow to monocrotaline and the associated occurrence of neointimal lesions. Increased pulmonary blood flow induced the expression of the transcription factors activating transcription factor-3 (ATF3) and early growth response factor-1 (EGR-1), for which presence was confirmed in neointimal lesions. Monocrotaline alone induced increased numbers of activated mast cells and their products. We further identified molecular pathways that may be involved in treatment with the prostacyclin analog iloprost, a vasoactive compound with clinically beneficial effects in patients with PAH, which were similar to pathways described in samples from patient studies. These pathways, associated with the development of angioproliferative lesions as well as with the response to therapy in PAH, may provide new therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document