scholarly journals Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling, and fibrosis in mice

2019 ◽  
Vol 9 (4) ◽  
pp. 204589401988195
Author(s):  
Ioanna Nikitopoulou ◽  
Nikolaos Manitsopoulos ◽  
Anastasia Kotanidou ◽  
Xia Tian ◽  
Aleksandar Petrovic ◽  
...  

Pulmonary fibrosis is a progressive disease characterized by disruption of lung architecture and deregulation of the pulmonary function. Prostacyclin, a metabolite of arachidonic acid, is a potential disease mediator since it exerts anti-inflammatory and anti-fibrotic actions. We investigated the effect of treprostinil, a prostacyclin analogue, in bleomycin-induced experimental pulmonary fibrosis. Bleomycin sulfate or saline was administrated intratracheally to mice ( n = 9–10/group) at day 0. Orotracheal aspiration of treprostinil or vehicle was administered daily and started 24 h prior to bleomycin challenge. Evaluation of lung pathology was performed in tissue samples and bronchoalveolar lavage fluid collected 7, 14 and 21 days after bleomycin exposure. Lung injury was achieved due to bleomycin exposure at all time points as indicated by impaired lung mechanics, pathologic lung architecture (from day 14), and cellular and protein accumulation in the alveolar space accompanied by a minor decrease in lung tissue VE-cadherin at day 14. Treprostinil preserved lung mechanics, and reduced lung inflammation, fibrosis, and vascular remodeling (day 21); reduced cellularity and protein content of bronchoalveolar lavage fluid were additionally observed with no significant effect on VE-cadherin expression. Bleomycin-induced collagen deposition was attenuated by treprostinil from day 14, while treprostinil involvement in regulating inflammatory processes appears mediated by NF-κB signaling. Overall, prophylactic administration of treprostinil, a stable prostacyclin analogue, maintained lung function, and prevented bleomycin-induced lung injury, and fibrosis, as well as vascular remodeling, a hallmark of pulmonary hypertension. This suggests potential therapeutic efficacy of treprostinil in pulmonary fibrosis and possibly in pulmonary hypertension related to chronic lung diseases.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Asbjørn G. Petersen ◽  
Peter C. Lind ◽  
Anne-Sophie B. Jensen ◽  
Mark A. Eggertsen ◽  
Asger Granfeldt ◽  
...  

Abstract Background Senicapoc is a potent and selective blocker of KCa3.1, a calcium-activated potassium channel of intermediate conductance. In the present study, we investigated whether there is a beneficial effect of senicapoc in a large animal model of acute respiratory distress syndrome (ARDS). The primary end point was the PaO2/FiO2 ratio. Methods ARDS was induced in female pigs (42–49 kg) by repeated lung lavages followed by injurious mechanical ventilation. Animals were then randomly assigned to vehicle (n = 9) or intravenous senicapoc (10 mg, n = 9) and received lung-protective ventilation for 6 h. Results Final senicapoc plasma concentrations were 67 ± 18 nM (n = 9). Senicapoc failed to change the primary endpoint PaO2/FiO2 ratio (senicapoc, 133 ± 23 mmHg; vehicle, 149 ± 68 mmHg). Lung compliance remained similar in the two groups. Senicapoc reduced the level of white blood cells and neutrophils, while the proinflammatory cytokines TNFα, IL-1β, and IL-6 in the bronchoalveolar lavage fluid were unaltered 6 h after induction of the lung injury. Senicapoc-treatment reduced the level of neutrophils in the alveolar space but with no difference between groups in the cumulative lung injury score. Histological analysis of pulmonary hemorrhage indicated a positive effect of senicapoc on alveolar–capillary barrier function, but this was not supported by measurements of albumin content and total protein in the bronchoalveolar lavage fluid. Conclusions In summary, senicapoc failed to improve the primary endpoint PaO2/FiO2 ratio, but reduced pulmonary hemorrhage and the influx of neutrophils into the lung. These findings open the perspective that blocking KCa3.1 channels is a potential treatment to reduce alveolar neutrophil accumulation and improve long-term outcome in ARDS.


Respirology ◽  
2012 ◽  
Vol 17 (5) ◽  
pp. 814-820 ◽  
Author(s):  
SADATOMO TASAKA ◽  
KOSUKE MIZOGUCHI ◽  
YOHEI FUNATSU ◽  
HO NAMKOONG ◽  
WAKAKO YAMASAWA ◽  
...  

2018 ◽  
Vol 2 (S1) ◽  
pp. 33-33
Author(s):  
Elizabeth L. Kramer ◽  
William Hardie ◽  
Kristin Hudock ◽  
Cynthia Davidson ◽  
Alicia Ostmann ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Transforming growth factor-beta (TGFβ) is a genetic modifier of cystic fibrosis (CF) lung disease. TGFβ’s pulmonary levels in young CF patients and its mechanism of action in CF are unknown. We examined TGFβ levels in children with CF and investigated responses of human airway epithelial cells (AECs) and mice to TGFβ. METHODS/STUDY POPULATION: TGFβ levels in bronchoalveolar lavage fluid from CF patients (n=15) and non-CF control patients (n=21)<6 years old were determined by ELISA. CF mice and non-CF mice were intratracheally treated with an adenoviral TGFβ1 vector or PBS; lungs were collected for analysis at day 7. Human CF and non-CF AECs were treated with TGFβ or PBS for 24 hours then collected for analysis. RESULTS/ANTICIPATED RESULTS: Young CF patients had higher bronchoalveolar lavage fluid TGFβ than non-CF controls (p=0.03). Mouse lungs exposed to TGFβ demonstrated inflammation, goblet cell hyperplasia, and decreased CFTR expression. CF mice had greater TGFβ-induced lung mechanics abnormalities than controls; both CF human AECs and CF mice showed higher TGFβ induced MAPK and PI3K signaling compared with controls. DISCUSSION/SIGNIFICANCE OF IMPACT: For the first time, we show increased TGFβ levels very early in CF. TGFβ drives CF lung abnormalities in mouse and human models; CF models are more sensitive to TGFβ’s effects. Understanding the role of TGFβ in promoting CF lung disease is critical to developing patient specific treatments.


Perfusion ◽  
2003 ◽  
Vol 18 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Wolfgang Eichler ◽  
J F Matthias Bechtel ◽  
Jan Schumacher ◽  
Johanna A Wermelt ◽  
Karl-Friedrich Klotz ◽  
...  

Postoperative acute lung injury (ALI) contributes to the morbidity and mortality following cardiopulmonary bypass (CPB). To determine whether the presence of matrix metalloproteinases (MMPs) is associated with ALI after CPB, MMP-2 and MMP-9 activities in bronchoalveolar lavage fluid (BALF) were compared with parameters indicating impaired gas exchange. In a prospective study, 17 minipigs were subjected to CPB for 60 min. Before and at five and 180 min after CPB, MMP-2 and MMP-9 were assayed in BALF and the arterial-alveolar gradient of oxygen tension (AaDO2), the pulmonary capillary wedge pressure (PCWP) and the water content of lung tissue samples (Wt) were evaluated and compared with baseline values. MMP-2 and MMP-9 increased significantly 5 minutes (2.1- and 6.2-fold, respectively) and 180 minutes (3.4- and 14.3-fold, respectively) post-CPB. AaDO2 and Wt, but not PCWP, increased significantly 180 minutes after CPB and only AaDO2, but not PCWP or Wt, was significantly correlated with MMP-2 (r/0.66, p/0.006) and MMP-9 (r/0.62, p/0.01). In conclusion, high levels of MMP-2 and MMP-9 in the pulmonary compartment are associated with ALI after CPB.


Sign in / Sign up

Export Citation Format

Share Document