scholarly journals MicroRNA-425 induces apoptosis and suppresses migration and invasion of human cervical cancer cells by targeting RAB2B

2021 ◽  
Vol 35 ◽  
pp. 205873842110161
Author(s):  
Yue Tian ◽  
Ying Luo ◽  
Jing Wang

Dysregulation of microRNA-425 (miR-425) has been reported in several human cancers. However, the role of miR-425 in human cervical cancer via modulation of RAB2B expression is still unclear. This study was therefore designed to examine the expression and decipher the role of miR-425 in cervical cancer. The qRT-PCR was used for expression analysis. MTT and EdU assays were used for the determination of cell viability and proliferation, respectively. Annexin V/PI staining was used to detect apoptosis. Wound healing and transwell assays were used to monitor cell migration and invasion. Western blotting was used for protein expression analysis. The in vivo study was performed in xenografted mice model. The results of the present study revealed miR-425 to be significantly ( P = 0.032) down-regulated in cervical cancer tissues and cell lines. Additionally, low expression of miR-425 was associated with significantly ( P = 0.035) lower survival rate of the cervical cancer patients. Overexpression of miR-425 resulted in significant ( P = 0.024) decline of cervical cancer cell proliferation via induction of apoptosis. The induction of apoptosis was associated with up-regulation of Bax and down-regulation of Bcl-2. Besides, the migration and invasion of cancer cells significantly ( P < 0.01) decreased under miR-425 overexpression. Additionally, miR-425 could inhibit the growth of xenografted tumors in vivo. In silico analysis and dual luciferase assay revealed RAB2B as the direct target of miR-425 in cervical cancer. RAB2B was found to be significantly ( P < 0.05) up-regulated in cervical cancer tissues and cell lines and miR-425 overexpression suppressed the expression of RAB2B. Additionally, silencing of RAB2B could suppress the growth of cervical cancer cells but its overexpression could rescue the tumor-suppressive effects of miR-425. Taken together, the results revealed the tumor-suppressive roe of miR-425 and point towards its therapeutic potential in the management of cervical cancer.

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Chen Wang ◽  
Jie Zeng ◽  
Li-Jie Li ◽  
Min Xue ◽  
Si-Li He

AbstractCervical cancer is the leading cause of cancer-related deaths in women, and treatment for cervical cancer is very limited. Emerging evidence suggests that targeting ferroptosis is a promising way to treat cancer. Here, we investigated the role of ferroptosis in cervical cancer, with a focus on the Cdc25A/PKM2/ErbB2 axis. Cervical cancer cells were treated with sorafenib to induce ferroptosis. Cellular MDA/ROS/GSH/iron detection assays were used to measure ferroptosis. MTT assays were performed to assess cell viability. qRT-PCR, western blot, and immunostaining assays were performed to measure the levels of proteins. Autophagy was monitored by fluorescence microscopy. Nuclear and cytosolic fractions were isolated to examine the location of PKM2 modifications. Co-IP experiments were conducted to determine the Cdc25A/PKM2 interaction. ChIP assays were performed to measure the binding affinity between H3K9Ac and the ErbB3 promoter, and a dual luciferase assay was performed to examine the transcriptional activity of ErbB2. A nude mouse xenograft model was used to examine the effects of the Cdc25A/ErbB2 axis on tumour growth in vivo. Cdc25A was elevated in human cervical cancer tissues but was reduced during sorafenib-induced ferroptosis of cervical cancer cells. Overexpression of Cdc25A inhibited sorafenib-induced ferroptosis by dephosphorylating nuclear PKM2 and suppressing autophagy. Cdc25A regulated autophagy-induced ferroptosis by increasing ErbB2 levels via the PKM2–pH3T11–H3K9Ac pathway. Cdc25A increased the resistance of cervical cancer to sorafenib, while knockdown of ErbB2 blocked these effects. Cdc25A suppressed autophagy-dependent ferroptosis in cervical cancer cells by upregulating ErbB2 levels through the dephosphorylation of PKM2. These studies revealed that Cdc25A/PKM2/ErbB2 pathway-regulated ferroptosis could serve as a therapeutic target in cervical cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haocheng Wang ◽  
Qingya Luo ◽  
Jianyi Kang ◽  
Qinglv Wei ◽  
Yu Yang ◽  
...  

N6-methyladenosine (m6A) is the most common post-transcriptional modification of RNA in eukaryotes, which has been demonstrated to play important roles in various cancers. YTHDF1 acts as a crucial m6A “reader” and regulates the fate of m6A modified mRNA. However, its role in cervical cancer remains unknown. In this study, we showed that YTHDF1 was highly expressed in cervical cancer, and was closely associated with the poor prognosis of cervical cancer patients. YTHDF1 knockdown suppressed the growth, migration and invasion, and induced apoptosis of cervical cancer cells. Moreover, YTHDF1 knockdown inhibited tumorigenesis of cervical cancer cells in vivo. Through combined on-line data analysis of RIP-seq, meRIP-seq and Ribo-seq upon YTHDF1 knockdown, RANBP2 was identified as the key target of YTHDF1 in cervical cancer cells. YTHDF1 regulated RANBP2 translation in an m6A-dependent manner without effect on its mRNA expression. RANBP2 potentiated the growth, migration and invasion of cervical cancer cells. Our study demonstrated the oncogenic role of YTHDF1 in cervical cancer by regulating RANBP2 expression and YTHDF1 represents a potential target for cervical cancer therapy.


2020 ◽  
Vol 21 (17) ◽  
pp. 6391
Author(s):  
Min-Hua Wu ◽  
Pei-Ru Wu ◽  
Yi-Hsien Hsieh ◽  
Chia-Liang Lin ◽  
Chung-Jung Liu ◽  
...  

Cervical cancer is the second most frequent type of gynecologic cancer worldwide. Prokineticin 2 (PROK2) is reported to be involved in tumor progression in some malignant tumors. However, the role of PROK2 in the development of cervical cancer remains unknown. Our results indicate that PROK2 is overexpressed in the human cervical cancer. Cervical cancer patients with high PROK2 expression have a shorter overall survival rate (OS) and disease-free survival rate (DFS). PROK2 acts as a potential biomarker for predicting OS and DFS of cervical cancer patients. We further show that PROK2 is important factor for oncogenic migration and invasion in human cervical cancer cells. Knockdown PROK2 significantly inhibited cell migration, invasion, and MMP15 protein expression in HeLa cells. High expression of MMP15 is confirmed in the human cervical cancer, is significantly associated with the shorter overall survival rate (OS) and is correlated with PROK2 expression. Overexpression of PROK2 using PROK2 plasmid significantly reverses the function of knockdown PROK2, and further upregulates MMP15 expression, migration and invasion of human cervical cancer cells. In conclusion, our findings are the first to demonstrate the role of PROK2 as a novel and potential biomarker for clinical use, and reveal the oncogenic functions of PROK2 as therapeutic target for cervical cancer.


2020 ◽  
Vol 19 ◽  
pp. 153303382093413 ◽  
Author(s):  
Huiling Zhang ◽  
Ruxin Chen ◽  
Jinyan Shao

Purpose: The current study was intended to research the functional role and regulatory mechanism of microRNA-96-5p in the progression of cervical cancer. Methods: MicroRNA-96-5p expression in cervical cancer tissues was assessed by quantitative real-time polymerase chain reaction. The association between microRNA-96-5p expression and clinicopathological features of patients with cervical cancer was analyzed. MTT, flow cytometry, wound healing, and transwell assay were performed to evaluate the viability, apoptosis, migration, and invasion of Hela and SiHa cells. Targetscan, dual-luciferase reporter gene assay, and RNA pull-down analysis were constructed to evaluate the target relationship between microRNA-96-5p and secreted frizzled-related protein 4. Results: MicroRNA-96-5p was overexpressed in cervical cancer tissues, and microRNA-96-5p expression was markedly associated with the clinical stage and lymph node metastasis of patients with cervical cancer. Overexpressed microRNA-96-5p facilitated the viability, migration, invasion, and inhibited the apoptosis of Hela and SiHa cells, whereas suppression of microRNA-96-5p exerted the opposite trend. Secreted frizzled-related protein 4 was proved to be a target of microRNA-96-5p. Silencing of secreted frizzled-related protein 4 eliminated the anti-tumor effect of microRNA-96-5p on cervical cancer cells. Conclusions: MicroRNA-96-5p facilitated the viability, migration, and invasion and inhibited the apoptosis of cervical cancer cells via negatively regulating secreted frizzled-related protein 4.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document