scholarly journals Co–Cr–Mo alloy binding peptide as molecular glue for constructing biomedical surfaces

2020 ◽  
Vol 18 ◽  
pp. 228080002092473
Author(s):  
Satoshi Migita ◽  
Kosuke Sakashita ◽  
Yuta Saito ◽  
Suyalatu ◽  
Tomohiko Yamazaki

The mechanical properties of Co–Cr–Mo (CCM) alloys are advantageous in various biomedical applications. However, because of their bioinert surface, CCM alloys exhibit poor endothelial cell attachment properties; thus, problems of biocompatibility remain. In this study, we aimed to improve the biocompatibility of the CCM alloy surface using solid-binding peptides. We selected peptides with high binding affinity for cast CCM alloy surfaces through in vitro evolution by the phage display method. The peptides were functionalized on the CCM alloy surfaces by simple immersion in the peptide solution. The peptide bound to both cast and 3D-printed CCMs with the same affinity. The peptides linked to the amino acid motif that promotes cell adhesion, and improved the attachment of endothelial cells on the 3D-printed CCM in serum and serum-free conditions. Hence, CCM-binding peptides are attractive tools for constructing a biofunctional surface on CCM-based biodevices.

2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
M. Mozafari ◽  
F. Moztarzadeh ◽  
M. Rabiee ◽  
M. Azami ◽  
N. Nezafati ◽  
...  

In this research, macroporous, mechanically competent and bioactive nanocomposite scaffolds have been fabricated from cross-linked gelatine (Gel) and nano bioactive glass (nBG) through layer solvent casting combined with freeze-drying and lamination techniques. This study has developed a new composition to produce a new bioactive nanocomposite which is porous with interconnected microstructure, pore sizes are 200-500 μm, porosity are 72%-86%. Also, we have reported formation of chemical bonds between nBG and Gel for the first time. Finally, the in vitro cytocompatability of the scaffolds was assessed using MTT assay and cell attachment study. Results indicated no sign of toxicity and cells found to be attached to the pore walls offered by the scaffolds. These results suggested that the developed nanocomposite scaffold possess the prerequisites for bone tissue engineering scaffolds and it can be used for tissue engineering applications.


Leukemia ◽  
2012 ◽  
Vol 27 (6) ◽  
pp. 1437-1440 ◽  
Author(s):  
A J Yost ◽  
O O Shevchuk ◽  
R Gooch ◽  
S Gusscott ◽  
M J You ◽  
...  

Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1867-1871 ◽  
Author(s):  
AR Migliaccio ◽  
M Bruno ◽  
G Migliaccio

Abstract The biologic activity of human biosynthetic granulocyte-monocyte colony stimulating factor (GM-CSF) was investigated in serum-free culture of erythroid progenitors derived from adult peripheral blood. The morphology of erythroid bursts and the cloning efficiency of BFU-E under serum-free conditions were similar to those observed in dishes with fetal bovine serum (FBS). For these experiments, progenitor cells were partially purified by Ficoll-Paque density centrifugation, adherence to a plastic surface, and complement-mediated cytotoxicity of Leu-1+ elements. For some studies, blastlike cells were harvested directly from 6-day-old semisolid cultures. In serum-free culture of the light-density cell fraction, biosynthetic erythropoietin (Ep) was sufficient for formation of pure and mixed erythroid colonies whereas GM-CSF was required for granulocyte-monocytic colonies. When adherent and Leu-1+ cells were removed, or when in vitro differentiated blast cells were used as a source of progenitors, neither Ep or GM-CSF alone induced colony formation. In dishes supplemented with both growth factors, erythroid bursts were detected. Although the presence of GM- CSF alone did not induce formation of any colony or clusters, BFU-E were recorded when Ep was added 8 days later, suggesting that BFU-E could be maintained. Terminal maturation of the resulting erythroid bursts was delayed by 8 days. These results provide evidence that GM- CSF acts directly on early erythroid progenitors. Furthermore, they suggest that both Ep and GM-CSF are necessary to start the differentiation process.


MRS Advances ◽  
2018 ◽  
Vol 3 (40) ◽  
pp. 2373-2378 ◽  
Author(s):  
Sandra E. Nájera ◽  
Monica Michel ◽  
Nam-Soo Kim

ABSTRACTPolymer composites of Polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2) were developed for biomedical applications. These composite materials were prepared, and then printed using Fused Deposition Modeling (FDM). 3D printed structures were characterized to determine their mechanical properties and biocompatibility. DSC analysis yielded useful information regarding the immiscibility of the different polymers, and it was observed that the particles of TiO2 improved the stability of the polymers. The ultimate tensile strength and the fracture strain increased by adding TiO2 as a filler, resulting in values of approximately 45 MPa and 5.5 % elongation. The printed composites show excellent in vitro biocompatibility including cell proliferation and adhesion, and are therefore promising candidates to be used in the biomedical field for bone replacement procedures, due to their properties similar to those of cancellous bone.


2005 ◽  
Vol 908 ◽  
Author(s):  
Robert Lee Zimmerman ◽  
Ismet Gürhan ◽  
Claudiu I. Muntele ◽  
Daryush Ila ◽  
Feyzan Özdal-Kurt ◽  
...  

AbstractBiocompatible Glassy Polymeric Carbon (GPC) is used for artificial heart valves and in other biomedical applications. Although it is ideally suited for implants in the blood stream, tissue that normally forms around the moving parts of a GPC heart valve sometimes loses adhesion and creates embolisms downstream. Here we compare silver ion implantation and silver deposition, each of which strongly inhibits cell attachment on GPC. Inhibition of cell adhesion is a desirable improvement to current GPC cardiac implants. In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that traces of silver can favorably influence the surface of GPC for biomedical applications.


1998 ◽  
Vol 46 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Yoji Ishida ◽  
Toshiharu Ito ◽  
Shin-ichiro Kuriya

To test the hypothesis that the c-mpl ligand is not a primary factor in thromb-ocytopoiesis, we investigated the biological effects of recombinant human (rh) c-mpl ligand on differentiation of murine progenitor cells and on maturation of the cultured murine megakaryocytes under serum-free conditions on the basis of ploidy distribution, megakaryocyte/platelet-specific surface antigen CD 61 [glycoprotein (GP) IIIa], and cytoplasmic acetylcholinesterase (AchE) expression in vitro. In addition, we studied the effect of c-mpl ligand on proplatelet formation (PPF) by murine mature megakaryocytes. AchE was less strongly expressed in cultured megakaryocytic cells stimulated by c-mpl ligand than in those stimulated by recombinant murine (rm) IL-3 + rh IL-6 during the differentiation of progenitor cells. Less CD 61 was expressed by c-mpl ligand during both the differentiation of progenitor cells and the maturation of megakaryocytes compared with that by rm IL-3 + rh IL-6. Endomitosis, however, was more stimulated by c-mpl ligand than by rm IL-3 + rh IL-6 under both conditions. Furthermore, PPF of mature megakaryocytes was not stimulated by c-mpl ligand. These results indicate that c-mpl ligand stimulates the nuclear development of megakaryocytic cells but that it does not stimulate cytoplasmic maturation and PPF as much as IL-6. These data strongly suggest that c-mpl ligand is not a primary factor in platelet production.


Author(s):  
Shayan Gholizadeh ◽  
Zahra Allahyari ◽  
Robert Carter ◽  
Luis F. Delgadillo ◽  
Marine Blaquiere ◽  
...  

AbstractPorous membranes are fundamental elements for tissue-chip barrier and co-culture models. However, the exaggerated thickness of commonly available membranes impedes an accurate in vitro reproduction of the biological multi-cellular continuum as it occurs in vivo. Existing techniques to fabricate membranes such as solvent cast, spin-coating, sputtering and PE-CVD result in uniform thickness films. To understand critical separation distances for various barrier and co-culture models, a gradient thickness membrane is needed. Here, we developed a robust method to generate ultrathin porous parylene C (UPP) membranes not just with precise thicknesses down to 300 nm, but with variable gradients in thicknesses, while at the same time having porosities up to 25%. We also show surface etching and increased roughness lead to improved cell attachment. Next, we examined the mechanical properties of UPP membranes with varying porosity and thickness and fit our data to previously published models, which can help determine practical upper limits of porosity and lower limits of thickness. Lastly, we validate a straightforward approach allowing the successful integration of the UPP membranes into a prototyped 3D-printed scaffold enabling in vitro barrier modeling and investigation of cell-cell interplay over variable distances using thickness gradients.


2014 ◽  
Vol 26 (1) ◽  
pp. 209
Author(s):  
Y. Zhang ◽  
C. Wei ◽  
P.-F. Zhang ◽  
X. Li ◽  
Y.-S. Li ◽  
...  

Somatic cells could be directly reprogrammed into stem state by ectopic expression of transcription factors, which share similar features of embryonic stem cells (ESC). Induced pluripotent stem cells (iPSC) possess promising application in producing genetically modified animals, whereas the generation of porcine offspring from iPSC is still difficult and controversial, and new materials are needed. In this study, we report the generation of iPSC from porcine adipose-derived stem cells (pADSC) using drug-inducible expression of defined human factors (Oct4, Sox2, Klf4, and c-Myc) and ‘2i’ plus leukemia inhibitory factor (LIF) culture system. pADSC were isolated from subcutaneous adipose tissue of a 28-day-old Danish Landrace, and subsequently characterised by high proliferation rate at low passages, long period passaging without significant replication senescence, mesenchymal stem cell-specific surface markers expression, including CD29 (0.995 ± 0.0577), CD44 (0.999 ± 0.0333), and CD90 (0.994 ± 0.0333), together with successful adipogenic and osteogenic differentiation ability in vitro. The reprogramming of iPSC from pADSC was evidently more efficient than the process from adult fibroblasts (P < 0.01), both of which were carried out under feeder-independent and serum-free conditions, and this may be due to the higher demethylation level of genomic DNA in pADSC. Two lines of porcine iPSC with naïve-like state were finally obtained through feeder-independent and serum-free conditions. The successful reprogramming of iPSC was demonstrated by short cell cycle interval, alkaline phosphatase (AP) staining positive, expression of stemness-related proteins including OCT-4, SOX2, NANOG, SSEA3, and SSEA4. Full reprogramming of iPSC was evaluated by the significant up-regulation of LIN28, ESRRB, UTF1, and DPPA5. Naïve-like state of porcine iPSC was further confirmed by the striking resemblance to naïve mESC, single-cell dissociation, LIF-dependency, up-regulation of STELLA and ERAS, and little translation of TRA-1-60 and TRA-1-81. In addition, porcine naïve-like iPSC possessed normal karyotypes, and could differentiate into cell types of all three germ layers in vitro and in vivo. Furthermore, in vivo studies to determine the capacity of these cells to integrate into the inner cell mass of blastocysts are still being undertaken for validation. Together, our study provided an efficient method to derive porcine naïve-like iPSC from pADSC, which may be useful for the production of living offspring. Y. Zhang and C. Wei contributed equally to this work. Y.-H. Zhang is the corresponding author. This work was supported by the National Natural Science Foundation Program 31272442.


Sign in / Sign up

Export Citation Format

Share Document