3D Printed PLA/PCL/TiO2 Composite for Bone Replacement and Grafting

MRS Advances ◽  
2018 ◽  
Vol 3 (40) ◽  
pp. 2373-2378 ◽  
Author(s):  
Sandra E. Nájera ◽  
Monica Michel ◽  
Nam-Soo Kim

ABSTRACTPolymer composites of Polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2) were developed for biomedical applications. These composite materials were prepared, and then printed using Fused Deposition Modeling (FDM). 3D printed structures were characterized to determine their mechanical properties and biocompatibility. DSC analysis yielded useful information regarding the immiscibility of the different polymers, and it was observed that the particles of TiO2 improved the stability of the polymers. The ultimate tensile strength and the fracture strain increased by adding TiO2 as a filler, resulting in values of approximately 45 MPa and 5.5 % elongation. The printed composites show excellent in vitro biocompatibility including cell proliferation and adhesion, and are therefore promising candidates to be used in the biomedical field for bone replacement procedures, due to their properties similar to those of cancellous bone.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5889
Author(s):  
Petra Arany ◽  
Ildikó Papp ◽  
Marianna Zichar ◽  
Máté Csontos ◽  
János Elek ◽  
...  

One of the most promising emerging innovations in personalized medication is based on 3D printing technology. For use as authorized medications, 3D-printed products require different in vitro tests, including dissolution and biocompatibility investigations. Our objective was to manufacture implantable drug delivery systems using fused deposition modeling, and in vitro tests were performed for the assessment of these products. Polylactic acid, antibacterial polylactic acid, polyethylene terephthalate glycol, and poly(methyl methacrylate) filaments were selected, and samples with 16, 19, or 22 mm diameters and 0%, 5%, 10%, or 15% infill percentages were produced. The dissolution test was performed by a USP dissolution apparatus 1. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide dye (MTT)-based prolonged cytotoxicity test was performed on Caco-2 cells to certify the cytocompatibility properties. The implantable drug delivery systems were characterized by thermogravimetric and heatflow assay, contact angle measurement, scanning electron microscopy, microcomputed tomography, and Raman spectroscopy. Based on our results, it can be stated that the samples are considered nontoxic. The dissolution profiles are influenced by the material properties of the polymers, the diameter, and the infill percentage. Our results confirm the potential of fused deposition modeling (FDM) 3D printing for the manufacturing of different implantable drug delivery systems in personalized medicine and may be applied during surgical interventions.


2013 ◽  
Vol 46 (24) ◽  
pp. 356-360 ◽  
Author(s):  
Marcos Sabino ◽  
Zulielfre Fermín ◽  
Loaiza Marielys ◽  
Josnell Moret ◽  
Dubravska Rodríguez ◽  
...  

Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025223
Author(s):  
Thomas M. Calascione ◽  
Nathan A. Fischer ◽  
Thomas J. Lee ◽  
Hannah G. Thatcher ◽  
Brittany B. Nelson-Cheeseman

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


Sign in / Sign up

Export Citation Format

Share Document