scholarly journals High-Fidelity Microsurgical Simulation: The Thiel Cadaveric Nerve Model and Evaluation Instrument

2019 ◽  
Vol 27 (4) ◽  
pp. 289-296
Author(s):  
Andrei Odobescu ◽  
Deborah Dawson ◽  
Isak Goodwin ◽  
Patrick G. Harris ◽  
Joseph BouMerhi ◽  
...  

With surgical education moving from a time-based to a competency-based model, developing high-fidelity simulation models has become a priority. The Thiel cadaveric model has previously been used for a number of medical and surgical simulations, including microvascular simulation. We aim to investigate the use of the Thiel model in peripheral nerve simulation and validate a novel evaluation instrument. Sixteen residents ranging from postgraduate years 1 to 6 participated in the study. Their nerve coaptations using Thiel cadaveric nerves were video recorded and evaluated by 5 fellowship-trained microsurgeons using the Micro-Neurorrhaphy Evaluation Scale (MNES). The intraclass correlation among the 5 evaluators was 0.75, revealing excellent interrater reliability. The Cronbach α was .77, underlining the internal consistency of the test items. Bivariate analysis revealed a significant association between the MNES scores and the participants’ self-declared level of experience. This correlation was confirmed by mixed modeling. Our results validate the MNES and underscore the utility of the Thiel nerve tissue for peripheral nerve surgical simulation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estefanía Hernandez-Martin ◽  
Enrique Arguelles ◽  
Yifei Zheng ◽  
Ruta Deshpande ◽  
Terence D. Sanger

AbstractHigh-frequency peripheral nerve stimulation has emerged as a noninvasive alternative to thalamic deep brain stimulation for some patients with essential tremor. It is not known whether such techniques might be effective for movement disorders in children, nor is the mechanism and transmission of the peripheral stimuli to central brain structures understood. This study was designed to investigate the fidelity of transmission from peripheral nerves to thalamic nuclei in children with dystonia undergoing deep brain stimulation surgery. The ventralis intermediate (VIM) thalamus nuclei showed a robust evoked response to peripheral high-frequency burst stimulation, with a greatest response magnitude to intra-burst frequencies between 50 and 100 Hz, and reliable but smaller responses up to 170 Hz. The earliest response occurred at 12–15 ms following stimulation onset, suggesting rapid high-fidelity transmission between peripheral nerve and thalamic nuclei. A high-bandwidth, low-latency transmission path from peripheral nerve to VIM thalamus is consistent with the importance of rapid and accurate sensory information for the control of coordination and movement via the cerebello-thalamo-cortical pathway. Our results suggest the possibility of non-invasive modulation of thalamic activity in children with dystonia, and therefore the possibility that a subset of children could have beneficial clinical response without the need for invasive deep brain stimulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noreen M. Gervasi ◽  
Alexander Dimtchev ◽  
Desraj M. Clark ◽  
Marvin Dingle ◽  
Alexander V. Pisarchik ◽  
...  

AbstractPeripheral Nerve Injury (PNI) represents a major clinical and economic burden. Despite the ability of peripheral neurons to regenerate their axons after an injury, patients are often left with motor and/or sensory disability and may develop chronic pain. Successful regeneration and target organ reinnervation require comprehensive transcriptional changes in both injured neurons and support cells located at the site of injury. The expression of most of the genes required for axon growth and guidance and for synapsis formation is repressed by a single master transcriptional regulator, the Repressor Element 1 Silencing Transcription factor (REST). Sustained increase of REST levels after injury inhibits axon regeneration and leads to chronic pain. As targeting of transcription factors is challenging, we tested whether modulation of REST activity could be achieved through knockdown of carboxy-terminal domain small phosphatase 1 (CTDSP1), the enzyme that stabilizes REST by preventing its targeting to the proteasome. To test whether knockdown of CTDSP1 promotes neurotrophic factor expression in both support cells located at the site of injury and in peripheral neurons, we transfected mesenchymal progenitor cells (MPCs), a type of support cells that are present at high concentrations at the site of injury, and dorsal root ganglion (DRG) neurons with REST or CTDSP1 specific siRNA. We quantified neurotrophic factor expression by RT-qPCR and Western blot, and brain-derived neurotrophic factor (BDNF) release in the cell culture medium by ELISA, and we measured neurite outgrowth of DRG neurons in culture. Our results show that CTDSP1 knockdown promotes neurotrophic factor expression in both DRG neurons and the support cells MPCs, and promotes DRG neuron regeneration. Therapeutics targeting CTDSP1 activity may, therefore, represent a novel epigenetic strategy to promote peripheral nerve regeneration after PNI by promoting the regenerative program repressed by injury-induced increased levels of REST in both neurons and support cells.


2020 ◽  
Vol 195 ◽  
pp. 108982 ◽  
Author(s):  
Yi-Wen Chen ◽  
Kan Wang ◽  
Chia-Che Ho ◽  
Chia-Tze Kao ◽  
Hooi Yee Ng ◽  
...  

Spine ◽  
1991 ◽  
Vol 16 (1) ◽  
pp. 43-45 ◽  
Author(s):  
K OLMARKER ◽  
N DANIELSEN ◽  
C NORDBORG ◽  
B RYDEVIK

Lab on a Chip ◽  
2015 ◽  
Vol 15 (10) ◽  
pp. 2221-2232 ◽  
Author(s):  
Renee M. Huval ◽  
Oliver H. Miller ◽  
J. Lowry Curley ◽  
Yuwei Fan ◽  
Benjamin J. Hall ◽  
...  

A microscale, organotypicin vitromodel of sensory peripheral nerve tissue may be assessed with clinically-relevant morphological and physiological measures for use as a drug screening assay for selecting promising lead compounds with higher chances of late-stage success.


2017 ◽  
Vol 34 (5) ◽  
pp. 1485-1500
Author(s):  
Leifur Leifsson ◽  
Slawomir Koziel

Purpose The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models. Design/methodology/approach The proposed approach is based on the surrogate-based optimization paradigm. In particular, multi-fidelity surrogate models are used in the optimization process in place of the computationally expensive high-fidelity model. The multi-fidelity surrogate is constructed using physics-based low-fidelity models and a proper correction. This work introduces a novel correction methodology – referred to as the adaptive response prediction (ARP). The ARP technique corrects the low-fidelity model response, represented by the airfoil pressure distribution, through suitable horizontal and vertical adjustments. Findings Numerical investigations show the feasibility of solving real-world problems involving optimization of transonic airfoil shapes and accurate computational fluid dynamics simulation models of such surfaces. The results show that the proposed approach outperforms traditional surrogate-based approaches. Originality/value The proposed aerodynamic design optimization algorithm is novel and holistic. In particular, the ARP correction technique is original. The algorithm is useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search spaces, which is challenging using conventional methods because of excessive computational costs.


2015 ◽  
Vol 15 (6) ◽  
pp. 612-621 ◽  
Author(s):  
Lorena R. Lizarraga-Valderrama ◽  
Rinat Nigmatullin ◽  
Caroline Taylor ◽  
John W. Haycock ◽  
Frederik Claeyssens ◽  
...  

1962 ◽  
Vol Original Series, Volume 58 (4) ◽  
pp. 301-312
Author(s):  
R. Bergstrom

Author(s):  
Liudmyla Kukhar ◽  
Oleksandr Tarasenko

For the development of a good evaluation instrument, persons who are involved in the process should follow all the recommended stages (planning, test specification, piloting, removing redundant items). The using of formative assessment in education allows us to conduct such tire as piloting (approbation) that is intended to obtain the statistical parameters of test items, which can be used in a summative assessment. Correct design of test forms for a formative assessment can provide sufficient capabilities for their equating and linking. In this work we are focused only on evaluating just one construct, which is commonly related to only one subject in university curriculum. According to this reason we described a common items equating technique for test items preequating.


Sign in / Sign up

Export Citation Format

Share Document