scholarly journals Characterization of Deposits in Calcific Tendinitis of the Shoulder: Deposits Are Composed of Large Aggregates of Highly Crystalline, Rod-Like Crystals

2021 ◽  
Vol 9 (10) ◽  
pp. 232596712110447
Author(s):  
José Maria Mateos ◽  
Gad Singer ◽  
Andres Kaech ◽  
Urs Ziegler ◽  
Karim Eid

Background: In the current literature, deposits in calcific tendinitis are described as amorphous masses of hydroxyapatite with a size in the range of 5 to 20 μm. Theoretically, these are too big to be phagocytized by macrophages and induce an inflammatory reaction. Purpose: To better characterize the deposits seen in calcific tendinitis. Study Design: Case series; Level of evidence, 4. Methods: Included in the study were 6 patients with a history of at least 1 year of shoulder pain (range, 1-14 years). Shoulder arthroscopy was performed under general anesthesia, and calcium deposits from the supraspinatus tendon and biopsies from the adjacent subacromial bursa were taken. Samples were analyzed by light microscopy and immunostained for macrophages. Scanning electron microscopy and energy-dispersive x-ray (EDX) analysis were used to assess the morphology and chemical composition of the calcific deposits. Results: Light microscopy showed round and bulky calcium deposits partially surrounded by activated CD68-positive macrophages within inflammatory tissue. Some hemosiderin positive mononuclear cells, indicative for (micro-) hemorrhage, were seen. Scanning electron microscopy revealed that the large calcific deposits (1-20 μm) were composed of rod-like structures. These highly crystalline rods had a size of approximately 100 nm in length and 20 nm in width. Chemical composition by EDX analysis showed that crystals were composed of mainly calcium, oxygen, and phosphorus, equaling the chemical composition of hydroxyapatite. Conclusion: Deposits in calcific tendinitis of the rotator cuff are not amorphous but composed of highly crystalline structures. Fragmentation of these aggregates and subsequent release of the needle-like nanocrystals might initiate the strong inflammatory reaction often seen in patients with calcifying tendinitis of the rotator cuff.

IAWA Journal ◽  
2020 ◽  
Vol 41 (3) ◽  
pp. 356-389
Author(s):  
Nadeeshani Karannagoda ◽  
Antanas Spokevicius ◽  
Steven Hussey ◽  
Gerd Bossinger

Abstract The products of secondary xylem are of significant biological and commercial importance, and as a result, the biology of secondary growth and how intrinsic and extrinsic factors influence this process have been the subject of intense investigation. Studies into secondary xylem range in scale from the cellular to the forest stand level, with phenotypic analyses often involving the assessment of traits relating to cell morphology and cell wall chemical composition. While numerous techniques are currently available for phenotypic analyses of samples containing abundant amounts of secondary tissue, only a few of them (microanalytical techniques) are suitable when working with limiting amounts of secondary tissue or where a fine-scale resolution of morphological features or cell wall chemical composition is required. While polarised light microscopy, scanning electron microscopy, field emission-scanning electron microscopy and X-ray scattering and micro-tomography techniques serve as the most frequently used microanalytical techniques in morphotyping, techniques such as scanning ultraviolet microspectrophotometry, X-ray photoelectron spectroscopy, gas chromatography, Fourier-transform infrared spectroscopy and matrix-assisted laser desorption ionisation mass spectrometry serve as the most commonly used microanalytical techniques in chemotyping. Light microscopy, fluorescence microscopy, confocal laser scanning microscopy, transmission electron microscopy and Raman spectroscopy serve as dual micro morphotyping and chemotyping techniques. In this review, we summarise and discuss these techniques in the light of their applicability as microanalytical techniques to study secondary xylem.


2014 ◽  
Vol 782 ◽  
pp. 339-343 ◽  
Author(s):  
Izabela Pikos ◽  
Tomasz Rzychoń ◽  
Andrzej Kiełbus

The creep resistance of Elektron 21 magnesium alloy containing Zn, Nd, Gd and Zr has been investigated. Test has been conducted at 200°C, 225°C and 250°C with constant load amounts to 90, 120 and 150 MPa up to 100 hours. Some specimens cracked during the test. Metallographic and fractographic research has been performed in order to identify the microstructural changes occurring during the creep resistance test. Microstructure has been observed with light microscopy and scanning electron microscopy. Chemical composition of microstructural components has been investigated with energy dispersion spectroscopy. Research revealed presence of voids, microcracks and inclusions which can significantly influence creep resistance of material.


2006 ◽  
Vol 113 ◽  
pp. 537-540
Author(s):  
Marek Szkodo ◽  
M. Głowacka ◽  
M. Smajdor ◽  
Henryk Bugłacki

In the work phase investigations of special brass CuZn38Al2MnFe alloy are presented. The microstructure, chemical composition and phase identification of the investigated alloy were examined using scanning electron microscopy (Philips 30/ESEM), light microscopy Leica coupled with PC computer with installed MultiScan program, energy dispersive X-ray spectroscopy (EDX) and X-ray diffractometry (XRD), respectively. The investigation of volume fraction existing phases was carried out using image analysis. It was found in the test bend that presence of Fe4Mn77Si19 phase in microstructure caused an increase of brittleness of the tested alloy.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
D. Johnson ◽  
P. Moriearty

Since several species of Schistosoma, or blood fluke, parasitize man, these trematodes have been subjected to extensive study. Light microscopy and conventional electron microscopy have yielded much information about the morphology of the various stages; however, scanning electron microscopy has been little utilized for this purpose. As the figures demonstrate, scanning microscopy is particularly helpful in studying at high resolution characteristics of surface structure, which are important in determining host-parasite relationships.


Author(s):  
D.R. Hill ◽  
J.R. McCurry ◽  
L.P. Elliott ◽  
G. Howard

Germination of Euonymous americanus in the laboratory has previously been unsuccessful. Ability to germinate Euonymous americanus. commonly known as the american strawberry bush, is important in that it represents a valuable food source for the white-tailed deer. Utilizing the knowledge that its seeds spend a period of time in the rumin fluid of deer during their dormant stage, we were successful in initiating germination. After a three month drying period, the seeds were placed in 25 ml of buffered rumin fluid, pH 8 at 40°C for 48 hrs anaerobically. They were then allowed to dry at room temperature for 24 hrs, placed on moistened filter paper and enclosed within an environmental chamber. Approximately four weeks later germination was detected and verified by scanning electron microscopy; light microscopy provided inadequate resolution. An important point to note in this procedure is that scarification, which was thought to be vital for germination, proved to be unnecessary for successful germination to occur. It is believed that germination was propagated by the secretion of enzymes or prescence of acids produced by microorganisms found in the rumin fluid since sterilized rumin failed to bring about germination.


2009 ◽  
Vol 18 (2) ◽  
pp. 191-195
Author(s):  
E.V. Soldatenko

The radula morphology and the anatomy of the copulatory apparatus in Kolhymorbis angarensis were examined using light microscopy, scanning electron microscopy (SEM) and histological methods. Kolhymorbis angarensis was shown to have the stylet and the penial sac with a glandular appendage (flagellum), the characteristics, previously unknown for any species of this genus. The significance of these findings for the taxonomy of the genus is discussed.


1984 ◽  
Vol 32 (5) ◽  
pp. 561 ◽  
Author(s):  
PY Ladiges

The trichomes of Angophora and Eucalyptus are illustrated from scanning electron microscopy and light microscopy, and evolutionary trends are discussed. Bristle glands of Angophora and Eucalyptus subgen. Blakella and Corymbia are emergent oil glands of varying lengths. Emergent oil glands occur in all other Eucalyptus subgenera but they are most conspicuous in Blakella, Corymbia and Angophora, in which they are characterized by four cap cells each ornamented with micropapillae. Hairs in Angophora are unique, being multicellular; they are also uniseriate and scattered on the epidermis. In contrast, hairs in Eucalyptus are simple extensions, short or long, of the cells on the sides of or the cap cells of the emergent oil glands, and they are not homologous with those of Angophora. Eucalyptus setosa (subgen. Blakella) and E. brockwayi (subgen. Symphyomyrtus) are two exceptions, having unicellular hairs on the epidermis, not associated with oil glands. It is suggested that this is an ancestral condition (or secondary reversal to it).


Phytotaxa ◽  
2021 ◽  
Vol 502 (2) ◽  
pp. 191-207
Author(s):  
SHIVANI KASHYAP ◽  
CHANDAN KUMAR SAHU ◽  
ROHIT KUMAR VERMA ◽  
LAL BABU CHAUDHARY

Due to large size and enormous morphological plasticity, the taxonomy of the genus Astragalus is very complex and challenging. The identification and grouping of species chiefly based on macromorphological characters become sometimes difficult in the genus. In the present study, the micromorphology of the seeds of 30 species belonging to 14 sections of Astragalus from India has been examined applying scanning electron microscopy (SEM) along with light microscopy (LM) to evaluate their role in identification and classification. Attention was paid to colour, shape, size and surface of seeds. The overall size of the seeds ranges from 1.5–3.2 × 0.8–2.2 mm. The shape of the seeds is cordiform, deltoid, mitiform, orbicular, ovoid and reniform. The colour of seeds varies from brown to blackish-brown to black. Papillose, reticulate, ribbed, rugulate and stellate patterns were observed on the seed coat surface (spermoderm) among different species. The study reveals that the seed coat ornamentations have evolved differently among species and do not support the subgeneric and sectional divisions of the genus. However, they add an additional feature to the individual species, which may help in identification in combination with other macro-morphological features.


Botany ◽  
2009 ◽  
Vol 87 (2) ◽  
pp. 210-221 ◽  
Author(s):  
Julia Nowak ◽  
Adam Nowak ◽  
Usher Posluszny

Compound palm leaf development is unique and consists of two processes. First, the primordial tissue folds through differential growth, forming plications. Second, these plications separate through an abscission-like process, forming leaflets. The second process of leaflet separation allows for the development of compound leaves. The question that this study addresses concerns the development of bifid leaves, as they do not form leaflets but only develop a cleft through an apical incision. The ideal genus to use for this study is Chamaedorea as it includes species with both pinnate and bifid leaves. Chamaedorea fragrans (Ruiz & Pav.) Mart. and Chamaedorea stolonifera H. Wendl. ex Hook. f. were chosen as the species with adult bifid leaves. Although Chamaedorea seifrizii Burret is a pinnate-leaved palm, its juvenile leaves are bifid. Scanning electron microscopy and light microscopy were used to study the development of bifid leaves. Our results indicate that neither of these bifid palms develop separation sites within the lamina, but rather the apical cleft develops through “late leaflet separation” or by an abscission-like process. In contrast, C. seifrizii juvenile leaves exhibit “early leaflet separation” when developing the apical cleft.


Sign in / Sign up

Export Citation Format

Share Document