scholarly journals Retrieval of cryostat section for comparison of histochemistry and quantitative electron microscopy in a muscle fiber.

1977 ◽  
Vol 25 (10) ◽  
pp. 1169-1177 ◽  
Author(s):  
B R Eisenberg ◽  
A M Kuda

A method is presented that can be used to perform histochemical and morphometric analyses on the same muscle fiber. Freshly dissected fibers from medial gastrocnemius muscle of adult guinea pig were kept at a resting length and rapidly frozen. Serial frozen cross-sections were cut and reacted for myofibrillar adenosine triphosphatase and succinic dehydrogenase. The adjacent section, while still frozen, was immersed into 20 degrees C glutaraldehyde fixative to which EGTA was added to minimize artifactious contraction. The fixed section was processed for electron microscopy and the section rotated before thin sectioning to give longitudinal sections enabling study of sarcomeres. Ultrastructure was well-preserved despite slight disorganization of the contractile filaments and some vesiculation of the sarcoplasmic reticulum. The Z line width was measured and the mitochondrial volume fraction estimated by point counting morphometry from 89 fibers. The fibers with dark myofibrillar adenosine triphosphatase staining have Z widths of 547 +/- 165 A (n=69) and thoshosphatase staining have Z widths of 547 +/- 165 A (n=69) and those with light stain have 1023 +/- 113 A (n=20). The density of the succinic dehydrogenase reaction product in the fibers was divided into dark and light and the mitochondrial volume fractions were foud to be 4.3 +/- 2.1% (n=52) and 1.0 +/- 1.1% (n=37), respectively.

1963 ◽  
Vol 17 (1) ◽  
pp. 19-58 ◽  
Author(s):  
David D. Sabatini ◽  
Klaus Bensch ◽  
Russell J. Barrnett

The aldehydes introduced in this paper and the more appropriate concentrations for their general use as fixatives are: 4 to 6.5 per cent glutaraldehyde, 4 per cent glyoxal, 12.5 per cent hydroxyadipaldehyde, 10 per cent crotonaldehyde, 5 per cent pyruvic aldehyde, 10 per cent acetaldehyde, and 5 per cent methacrolein. These were prepared as cacodylate- or phosphate-buffered solutions (0.1 to 0.2 M, pH 6.5 to 7.6) that, with the exception of glutaraldehyde, contained sucrose (0.22 to 0.55 M). After fixation of from 0.5 hour to 24 hours, the blocks were stored in cold (4°C) buffer (0.1 M) plus sucrose (0.22 M). This material was used for enzyme histochemistry, for electron microscopy (both with and without a second fixation with 1 or 2 per cent osmium tetroxide) after Epon embedding, and for the combination of the two techniques. After fixation in aldehyde, membranous differentiations of the cell were not apparent and the nuclear structure differed from that commonly observed with osmium tetroxide. A postfixation in osmium tetroxide, even after long periods of storage, developed an image that—notable in the case of glutaraldehyde—was largely indistinguishable from that of tissues fixed under optimal conditions with osmium tetroxide alone. Aliesterase, acetylcholinesterase, alkaline phosphatase, acid phosphatase, 5-nucleotidase, adenosine triphosphatase, and DPNH and TPNH diaphorase activities were demonstrable histochemically after most of the fixatives. Cytochrome oxidase, succinic dehydrogenase, and glucose-6-phosphatase were retained after hydroxyaldipaldehyde and, to a lesser extent, after glyoxal fixation. The final product of the activity of several of the above-mentioned enzymes was localized in relation to the fine structure. For this purpose the double fixation procedure was used, selecting in each case the appropriate aldehyde.


1991 ◽  
Vol 250 ◽  
Author(s):  
Richard A. Dobbins

AbstractBoth electron microscopy and light scattering have played an important role in elucidating the processes of inception, growth, and oxidation of carbonaceous particles in flames. The techniques developed have application to the various pyrogenic materials including the metallic oxides, carbides, etc. Thermophoretic sampling has been developed to afford efficient extraction of particle samples from hot reaction zones. The sampling procedure preserves the particle morphology for subsequent analysis by transmission electron microscopy (TEM). Studies using this technique have shown aggregate structures with fractal dimensions of 1.6 to 1.8, a result that is consistent with the computer simulations of the cluster-cluster aggregation process. Diverse morphologies, including microparticles found in the particle inception zone, reveal the evolution of these aggregates. The optical cross sections for polydisperse aggregates which are used to interpret the laser scattering/extinction tests (LSE) are described. Population averaged properties - volume fraction, volume mean diameter, monomer and aggregate number concentrations, mean-square radius of gyration - are derived. The interactive use TEM and LSE data leads to a global description of the aggregate dynamic processes which are found to be regionally partitioned within the laminar hydrocarbon diffusion flame.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


Author(s):  
C. N. Sun ◽  
J. J. Ghidoni

Endothelial cells in longitudinal and cross sections of aortas from 3 randomly selected “normal” mongrel dogs were studied by electron microscopy. Segments of aorta were distended with cold cacodylate buffered 5% glutaraldehyde for 10 minutes prior to being cut into small, well oriented tissue blocks. After an additional 1-1/2 hour period in glutaraldehyde, the tissue blocks were well rinsed in buffer and post-fixed in OsO4. After dehydration they were embedded in a mixture of Maraglas, D.E.R. 732, and DDSA.Aldehyde fixation preserves the filamentous and tubular structures (300 Å and less) for adequate demonstration and study. The functional significance of filaments and microtubules has been recently discussed by Buckley and Porter; the precise roles of these cytoplasmic components remains problematic. Endothelial cells in canine aortas contained an abundance of both types of structures.


Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


Author(s):  
John M. Basgen ◽  
Eileen N. Ellis ◽  
S. Michael Mauer ◽  
Michael W. Steffes

To determine the efficiency of methods of quantitation of the volume density of components within kidney biopsies, techniques involving a semi-automatic digitizing tablet and stereological point counting were compared.Volume density (Vv) is a parameter reflecting the volume of a component to the volume that contains the component, e.g., the fraction of cell volume that is made up of mitochondrial volume. The units of Vv are μm3 /μm3.Kidney biopsies from 15 patients were used. Five were donor biopsies performed at the time of kidney transplantation (patients 1-5, TABLE 1) and were considered normal kidney tissue. The remaining biopsies were obtained from diabetic patients with a spectrum of diabetic kidney lesions. The biopsy specimens were fixed and embedded according to routine electron microscogy protocols. Three glomeruli from each patient were selected randomly for electron microscopy. An average of 12 unbiased and systematic micrographs were obtained from each glomerulus and printed at a final magnification of x18,000.


Author(s):  
Richard Mcintosh ◽  
David Mastronarde ◽  
Kent McDonald ◽  
Rubai Ding

Microtubules (MTs) are cytoplasmic polymers whose dynamics have an influence on cell shape and motility. MTs influence cell behavior both through their growth and disassembly and through the binding of enzymes to their surfaces. In either case, the positions of the MTs change over time as cells grow and develop. We are working on methods to determine where MTs are at different times during either the cell cycle or a morphogenetic event, using thin and thick sections for electron microscopy and computer graphics to model MT distributions.One approach is to track MTs through serial thin sections cut transverse to the MT axis. This work uses a video camera to digitize electron micrographs of cross sections through a MT system and create image files in computer memory. These are aligned and corrected for relative distortions by using the positions of 8 - 10 MTs on adjacent sections to define a general linear transformation that will align and warp adjacent images to an optimum fit. Two hundred MT images are then used to calculate an “average MT”, and this is cross-correlated with each micrograph in the serial set to locate points likely to correspond to MT centers. This set of points is refined through a discriminate analysis that explores each cross correlogram in the neighborhood of every point with a high correlation score.


Author(s):  
J. S. Shah ◽  
R. Durkin ◽  
A. N. Farley

It is now possible to perform High Pressure Scanning Electron Microscopy (HPSEM) in the range 10 to 2000 Pa. Here the effect of scattering on resolution has been evaluated by calculating the profile of the beam in high pressure and assessing its effect on the image contrast . An experimental scheme is presented to show that the effect of the primary beam ionization is to reduce image contrast but this effect can be eliminated by a novel use of specimen current detection in the presence of an electric field. The mechanism of image enhancement is discussed in terms of collection of additional carriers generated by the emissive components.High Pressure SEM (HPSEM) instrumentation is establishing itself as commercially viable. There are now a number of manufacturers, such as JEOL, ABT, ESCAN, DEBEN RESEARCH, selling microscopes and accessories for HPSEM. This is because high pressure techniques have begun to yield high quality micrographs at medium resolution.To study the effect of scattering on the incident electron beam, its profile - in a high pressure environment - was evaluated by calculating the elastic and inelastic scattering cross sections for nitrogen in the energy range 5-25 keV. To assess the effect of the scattered beam on the image contrast, the modification of a sharp step contrast function due to scattering was calculated by single scattering approximation and experimentally confirmed for a 20kV accelerated beam.


Sign in / Sign up

Export Citation Format

Share Document