ATEM investigation of experimentally annealed sillimanite: new constraints for the SiO2–Al2O3 join

2000 ◽  
Vol 64 (2) ◽  
pp. 247-254 ◽  
Author(s):  
P. Raterron ◽  
M. Carpenter ◽  
J.-C. Doukhan

AbstractFour samples of Fe-bearing prismatic sillimanite, containing ∼1 wt.% Fe2O3, were annealed experimentally at temperatures of 1465 and 1675°C, and pressures between 1 atm and 30 kbar. Transmission electron microscopy (TEM) and analytical TEM (ATEM) investigation of the samples reveal that the starting material partly transformed into mullite during the annealing, and that this process was assisted by partial melting. The exsolved partial melt (now a glass), observed at triple junctions and in the form of small precipitates (∼10–1000 nm in size) within the sillimanite matrix, contains >80 wt.% SiO2. It also contains ∼11 wt.% Al2O3, some FeO and detectable amounts of K2O and CaO. Dissociated c dislocations in sillimanite are preferential nucleation sites for SiO2-rich precipitates. The equilibrium compositions of residual sillimanite-mullite were measured with a 2 nm wide probe at the interface with the SiO2-rich glass in each sample after heat treatment. We used these equilibrium compositions to constrain the parameters of a point defect model for sillimanite mullitization proposed by Raterron et al. (1999). With the revised parameterization, it is now possible to calculate the position of the boundary between fields of mullite + melt and mullite in the SiO2–Al2O3 phase diagram, and to predict the effect of pressure on this boundary. However, to be used as a standard, this model still needs to be calibrated in the pure SiO2–Al2O3 system (without impurities such as iron).

2004 ◽  
Vol 19 (8) ◽  
pp. 2510-2516 ◽  
Author(s):  
Xiao Feng Zhang ◽  
Lutgard C. De Jonghe

Using transmission electron microscopy, we studied aluminum-containing intergranular phases and secondary-phase particles at triple-junctions in SiC (hot-pressed with aluminum, boron, and carbon additions). This study of statistical high-resolution electron microscopy of intergranular films indicated that a large fraction of the vitreous intergranular films (in the as-hot-pressed SiC) crystallized during post-annealing in argon above 1000 °C. However, brief heating to 1900 °C indeed re-melted 25% of the crystallized intergranular films. The structural transitions were reflected in the statistical width distributions of the amorphous grain-boundary layers. At triple-junctions, Al2O3, Al2OC-SiC solid solution, and mullite phases were newly identified. These phases, together with others reported before, are represented in a quaternary phase diagram for 1900 °C. It is proposed that a SiC-Al2OC liquid domain should be included in this phase diagram.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


2007 ◽  
Vol 561-565 ◽  
pp. 655-658 ◽  
Author(s):  
Qiang Zeng ◽  
Jennifer Luna ◽  
Y. Bayazitoglu ◽  
Kenneth Wilson ◽  
M. Ashraf Imam ◽  
...  

This study is considered as a method for producing multifunctional metal composite materials by using Single-walled Carbon Nanotubes (SWNTs). In this research, various metals (Ni, Cu, Ag ) were successfully deposited onto the surface of SWNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coating on SWNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified single-walled carbon nanotubes. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The application of coated SWNTs in Titanium will be discussed in this paper.


2016 ◽  
Vol 49 (4) ◽  
pp. 1223-1230 ◽  
Author(s):  
Xueli Wang ◽  
Huilan Huang ◽  
Xinfu Gu ◽  
Yanjun Li ◽  
Zhihong Jia ◽  
...  

The orientation relationships (ORs) between the Al matrix and Si2Hf precipitates with an orthorhombic structure in an Al–Si–Mg–Hf alloy after heat treatment at 833 K for 20 h were investigated by transmission electron microscopy and electron diffraction. Four ORs are identified as (100)Al||(010)p, (0\overline {1}1)Al||(101)pand [011]Al||[\overline {1}01]p; (11\overline {1})Al||(010)pand [011]Al||[\overline {1}01]p; (12\overline {1})Al||(010)p, (101)Al||(100)pand [1\overline {11}]Al||[001]p; (\overline {11}1)Al||(010)pand [112]Al||[\overline {1}01]p. The habit planes of these four ORs are rationalized by the fraction of good atomic matching sites at the interface. In addition, the formation of Si2Hf precipitates with a nanobelt-like morphology is interpreted on the basis of the near-coincident site lattice distribution.


2010 ◽  
Vol 64 ◽  
pp. 13-18 ◽  
Author(s):  
Shahin Khameneh Asl ◽  
Mohammad Reza Saghi Beyragh ◽  
Mahdi Ghassemi Kakroudi

Interest in nanomaterials has increased in recent years. This is due to the potential of size reduction to nanometric scale to provide properties of materials such as hardness, toughness, wear, and corrosion resistance. The current study is focused on WC-Co cermet coats, materials that are extensively used in applications requiring wear resistance. In this work, WC-17Co powder was thermally sprayed onto mild steel using High Velocity Oxy Fuel (HVOF) spray technique. The nanostructured specimen was produced from sprayed sample by heat-treating at 1100°C in a vacuum chamber. Their structures were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Polarization and electrochemical impedance spectroscopy (EIS) tests were performed on the both types of coated samples in 3.5% NaCl solution. The amorphous phase in WC-17Co coating was transformed to crystalline phases by heat treatment at high temperatures. The heat treatment of these coatings at high temperature also resulted in partially dissolution of WC particles and formation of new crystalline phases. Generation of these phases produced the nanostructured coating with better mechanical properties. Comparative electro chemical test results showed that, the heat treatment could improve corrosion resistance of the nanostructured WC-17Co coat than the as sprayed coats.


1987 ◽  
Vol 96 ◽  
Author(s):  
M. H. Ghandehari ◽  
J. Fidler

ABSTRACTMicrostructures of Nd15−xDyxFe77B8 prepared by alloying with Dy, and by using Dy2O3 as a sinl'ken adidive, have been determined using electron microprobe and transmission electron microscopy. The results have shown a higher Dy concentration near the grain boundaries of the 2–14–1 phase for magnets doped with Dy2O 3, as compared to the Dy-alloyed magnets. A two-step post sintering heat treatment was also studied for the two systems. The resultant concentration gradient of Dy in the 2–14–1 phase of the oxide-doped magnets is explained by the reaction of Dy2O3 with the Nd-rich grain boundary phase and its slow diffusion into thg 4–14–1 phase. Increased Dy concentration near the grain boundary is more effective in improving the coercivity, as domain reversal nucleation originates at or near this region.


2003 ◽  
Vol 18 (2) ◽  
pp. 475-481 ◽  
Author(s):  
Karfa Traoré ◽  
Philippe Blanchart

Kaolinite mixed with calcite was sintered at low temperature (1100 °C; 5 °C/min). The successive phase transformations are metakaolinite to gehlenite and then anorthite, although the available phase diagram indicates a direct anorthite recrystallization. Transmission electron microscopy and electron diffraction studies of nanocrystallites revealed that the transformation path is favored by the structural similarities of phases. In particular, the pseudolayers of gehlenite have a major orientation relationship with the initial metakaolinite layers. The gehlenite axis, [001]G, is parallel to the metakaolinite axis, [001]A. This direct transition is favored by the existence of Si tetrahedral units and 4–fold–coordinated Al in both structures. Ca atoms, initially in the interlayer spacing of metakaolinite, remain in the interlayers of gehlenite. During the second transformation step, anorthite recrystallizes from gehlenite with axis [020]A parallel to [210]G. It is proposed that this orientation relationship is favored by the orientation and shape of Ca-atom channels through both structures, along [001]G and [100]A axes.


1989 ◽  
Vol 4 (2) ◽  
pp. 248-256 ◽  
Author(s):  
T. M. Shaw ◽  
S. L. Shinde ◽  
D. Dimos ◽  
R. F. Cook ◽  
P. R. Duncombe ◽  
...  

We have used transmission electron microscopy and optical microscopy to examine the effect that grain size and heat treatment have on twinning and microcracking in polycrystalline Y1Ba2Cu3O7−δ. It is shown that isothermal oxygenation heat treatments produce twin structures consisting of parallel twins, with a characteristic spacing that increases with increasing grain size. Slow cooling through the temperature range where the orthorhombic-to-tetragonal transformation induces twinning, however, produces a structure consisting of a hierarchical arrangement of intersecting twins, the scale of which appears to be independent of grain size. It is also shown that the microcracking induced by anisotropic changes in grain dimensions on cooling or during oxygenation can be suppressed if the grain size of the material is kept below about 1 μm. The results are examined in the light of current models for transformation twinning and microcracking and the models used to access the effect other processing variables such as oxygen content, doping or heat treatment may have on the microstructure of Y1Ba2Cu3O7−δ.


1983 ◽  
Vol 28 ◽  
Author(s):  
J.W. Sears ◽  
B.C. Muddle ◽  
H.L. Fraser

ABSTRACTPowders of Al alloy 7091 have been consolidated by means of dynamic compaction. The dependence of density and hardness on projectile velocity has been determined. The resulting as-compacted material has been characterized using analytical transmission electron microscopy and evidence of interparticle melting observed. The microstructural responseof the compacted material to heat treatment at 523 and 723°K has been investigated.


2013 ◽  
Vol 750-752 ◽  
pp. 336-339
Author(s):  
Fa Chao Wu ◽  
Teng Fei Shen

In this work, CaCO3 nanoparticles have been synthesized via heat-treatment of a new precursor. Effect of calcinations temperature on particle size has been investigated. The products were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). nanoCaCO3 was modified using chloroform as solvent and fatty acid as modifier atroom temperature. The advantage of this modification is that it can be proceed at room temperature and it can reduce energy consumption.


Sign in / Sign up

Export Citation Format

Share Document