scholarly journals Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Travis T. Sims ◽  
Molly B. El Alam ◽  
Tatiana V. Karpinets ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
...  

AbstractDiversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.

Author(s):  
Travis T. Sims ◽  
Molly B. El Alam ◽  
Tatiana V. Karpinets ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
...  

Diversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. The modulation of gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.


2019 ◽  
Author(s):  
Ning Zheng ◽  
Shenghui Li ◽  
Bo Dong ◽  
Wen Sun ◽  
Huairui Li ◽  
...  

ABSTRACTObjectiveHospital environment has been implicated in enrichment and exchange of pathogens and antibiotic resistances, but its potential in shaping the symbiotic microbial community of the hospital staff is unclear. This study was designed to evaluate the alteration of gut microbiome in medical workers compared to non-medical controls.DesignProspective cross-sectional cohort study.SettingIntensive care unit (ICU) and other departments from a center in northeast China.Subjects175 healthy medical workers (1-3 months short-term workers, n = 80; >1 year long-term workers, n = 95) and 80 healthy normal controls.InterventionsNone.Measurements and Main ResultsFecal samples of all subjects were analyzed using the 16S rRNA gene sequencing. Medical workers exhibited remarkable deviation in gut microbial within-sample diversity and enterotypes stratification, and shift in overall microbial structure. Short-term workers were significantly more abundant in taxa including Lactobacillus, Butyrivibrio, Clostridiaceae_Clostridium, Ruminococcus, Dialister, Bifidobacterium, Odoribacter and Desulfovibrio, and with lower abundances of Bacteroides and Blautia compared with the controls. While long-term workers were enriched in taxa including Dialister, Veillonella, Clostridiaceae_Clostridium, Bilophila, Desulfovibrio, Pseudomonas and Akkermansia, with lower abundances of Bacteroides and Coprococcus compared with the controls. In addition, medical worker’s working years (short-term vs. long-term), hospital department (resident doctor vs. nursing staff) and work position (ICU vs. not-ICU) revealed considerable effects on their gut microbiome. Moreover, by analyzing the environmental samples (n = 9) around the inpatient wards and the hospital, we showed that the gut microbiota of medical workers was closer to environmental microbiota than that of the normal controls, probably in correlation to lasting exposure to the pathogenic taxa (e.g. Pseudomonas) in health workers.ConclusionsOur findings demonstrated structural changes in the gut microbial community of the medical workers. Further studies are proposed for investigating the potentially physiological influence of the altered gut microbiome in medical participants.IMPORTANCEIn this study, we for the first time focused on the influence of hospital environmental factors on gut microbiota of medical workers. The significance of our study is not limited to revealing the remodeling effect of the hospital environment on the gut microbiota of medical workers. Based on these, we also propose targeted and operational recommendations that can promote the health of hospital staff.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eik Schiegnitz ◽  
Lena Katharina Müller ◽  
Keyvan Sagheb ◽  
Lisa Theis ◽  
Vahide Cagiran ◽  
...  

Abstract Background and purpose The aim of this clinical study was to investigate the clinical long-term and patient-reported outcome of dental implants in patients with oral cancer. In addition, analysis of the influence of radiation therapy, timing of implant insertion, and augmentation procedures on implant survival was performed. Material and methods This retrospective study investigated the clinical outcome of 711 dental implants in 164 oral cancer patients, inserted by experienced surgeons of the Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Germany. Oral health-related quality of life (OHRQoL) was evaluated. Results Cumulative 5-year and 10-year implant survival rates for all included implants were 87.3% and 80.0%. Implants placed straight after ablative surgery (primary implant placement) and implants placed after completing the oncologic treatment (secondary implant placement) showed a comparable implant survival (92.5% vs. 89.5%; p = 0.635). Irradiation therapy had no significant influence on implant survival of secondary placed implants (p = 0.929). However, regarding implant site (native bone vs. augmented bone) and radiation therapy (non-irradiated bone vs. irradiated bone), implants inserted in irradiated bone that received augmentation procedures showed a statistically significant lower implant survival (p < 0.001). Patients reported a distinct improvement in OHRQoL. Conclusions Promising long-term survival rates of dental implants in patients after treatment of oral cancer were seen. In addition, patients benefit in form of an improved OHRQoL. However, bone augmentation procedures in irradiated bone may result in an impaired implants’ prognosis.


2021 ◽  
Author(s):  
Yueqiong Ni ◽  
Zoltan Lohinai ◽  
Yoshitaro Heshiki ◽  
Balazs Dome ◽  
Judit Moldvay ◽  
...  

AbstractCachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document