On the electrolysis of molten basalt

1968 ◽  
Vol 36 (284) ◽  
pp. 1104-1122 ◽  
Author(s):  
M. J. Oppenheim

SummaryThe effects to be expected from the interaction of possible electric currents at depth with bodies of basaltic magma have been investigated experimentally. Trough-shaped molten specimens were produced in the surface of basalt blocks by heating from above ; the melts were electrolysed and the products analysed chemically.Si, Al, Ti, P, Fe2+, and probably Fe3+ are concentrated towards the anode, apparently in the form of drifting lattice remnants; oxygen gas is liberated. Na, K, Ca, Mn, and Mg ions concentrate towards the cathode.Relatively to basalt, the cathodic product is an alkaline and femic rock with normative nepheline and a more acid plagioclase. The anodic rock is distinctly calc-alkaline and salic, with normative quartz and a plagioclase that is more basic. The precise ‘rock-type’ developed depends on the amount of electricity passed, but the trends are distinct. In that increasing basicity and alkalinity (cathodic rocks) are accompanied by both increasing Na/K and Mg/(Fe2+ + Fe3+) ratios (which ratios decrease with decreasing basicity and alkalinity) the electrolytic series developed from a basalt magma appears to have few counterparts among natural rocks.

1959 ◽  
Vol 63 (3) ◽  
pp. 459-499 ◽  
Author(s):  
H. I. Drever ◽  
R. Johnston

SynopsisThe results are presented of a detailed petrological reconnaissance of a group of picritic minor intrusions in the Hebrides. A substantial amount of new factual data is subjected to a unified treatment as a basis for reference and discussion. Olivine phenocrysts are not appreciably zoned and there is no evidence that they have a reaction relation with the liquid represented by the groundmass. Variations in the size and amount of olivine in individual intrusions are examined in detail and attributed to composite intrusion of differentiated material. A distinctive non-porphyritic facies found in several sills and in one dyke is chemically analyzed. Four analyses from widely separated localities establish this facies as a remarkably invariant, eucritic rock-type. The composition of the groundmass of the picritic rocks is variable and there is no evidence whatever of the participation of basaltic magma in their formation. Although no attempt is made to explain the new data in detail, a comprehensive working hypothesis is formulated. The origin of such picritic intrusions is believed to be due to selective fusion of pre-existing ultrabasic rock. Liquid more basic than normal basalt magmas can be formed by this process. Some re-precipitation of olivine may have preceded final emplacement of a magnesia-rich liquid which contained xenocrysts, mainly of olivine, from the source rock.


1988 ◽  
Vol 25 (4) ◽  
pp. 486-494
Author(s):  
J. K. Russell ◽  
G. T. Nixon ◽  
T. H. Pearce

Thermodynamic calculations and models of olivine zoning profiles are used to estimate the crystallization history of a basaltic magma from Cow Lakes, southeast Oregon. The lava is an alkali olivine basalt containing olivine and plagioclase phenocrysts and microphenocrysts. The geometry and range of chemical zoning in the olivine phenocrysts have been delineated by laser interference microscopy and electron microprobe analysis. The olivine phenocrysts are characterized by homogeneous cores and rims that exhibit strong, continuous, normal zoning (ΔFo = 7–19 mol%).Thermodynamic modelling has been used to estimate the magmatic crystallization path of the Cow Lakes basalt on the basis of the phenocryst assemblage and mineral compositions. The calculated crystallization path begins at 1290 °C and 0.5 GPa ([Formula: see text]) with equilibrium crystallization of the olivine to 1265 °C. Plagioclase appears at 1225 °C, followed by clinopyroxene at 1205 °C. Intratelluric crystallization was terminated prior to crystallization of the clinopyroxene, which is seen in the groundmass but not as phenocrysts.The thermodynamic modelling provides a means to numerically simulate the zoning patterns in olivine defined by the laser interference microscopy. Simulated and observed zoning patterns both have compositionally flat cores and strongly zoned rims. The extent of zoning observed in the olivine phenocrysts is, however, approximately twice the predicted extent, and it appears that a significant proportion of olivine phenocrysts crystallized during ascent or upon eruption.


2015 ◽  
Vol 186 (2-3) ◽  
pp. 171-192 ◽  
Author(s):  
Philippe Rossi ◽  
Alain Cocherie ◽  
C. Mark Fanning

Abstract The U2 group of plutonic rocks constituting the main exposed part of the Corsica-Sardinia batholith (CSB) was emplaced from 308 to 275 Ma (the early Visean U1 group of Mg-K intrusions is not considered here). Field evidence earlier established volcanic-plutonic relationships in the U2 group of calc-alkaline intrusions of the CSB, though detailed chronological data were still lacking. Large outcrops of U2 volcanic formations are restricted to the less eroded zone north-west of the Porto-Ponte Leccia line in Corsica, but volcanic and volcano-sedimentary formations were widely eroded elsewhere since Permian times. They probably covered most of the batholith before the Miocene, as testified by the volcanic nature of the pebbles that form much of the Early Miocene conglomerates of eastern Corsica. U-Pb zircon dating (SHRIMP) was used for deciphering the chronology and duration of different volcanic pulses and for better estimating the time overlap between plutonic and volcanic rock emplacement in the CSB. The obtained ages fit well with field data, showing that most of the U2 and U3 volcanic formations were emplaced within a brief time span of roughly 15 m.y., from 293 to 278 Ma, coeval with most U2 monzogranodiorites and leucomonzogranites (295–280 Ma), alkaline U3 complexes (about 288 Ma), and mafic-ultramafic tholeiitic complexes (295–275 Ma). The same chronological link between deep-seated magma chambers and eruptions was identified in the Pyrenees. These results correlate with U-Pb zircon dating of HT-LP granulites from the Variscan deep crust exhumed along the “European” margin of the thinned Tethys margin in Corsica and Calabria. Here, the peak of the low-pressure/high-temperature metamorphism was dated at about 285–280 Ma. Our results throw light on the condition of magma production during the orogenic collapse in the southern Variscan realm. While juvenile tholeiitic basaltic magma was produced by the melting of spinel mantle lithosphere, all fertile protoliths melted in a brief period during the HT-LP peak in lower continental crust, leading to massive emplacement of large felsic U2 calc-alkaline and minor U3 A-type volcano-plutonic formations over about 15 Ma.


1987 ◽  
Vol 51 (363) ◽  
pp. 719-732 ◽  
Author(s):  
A. J. Stolz

AbstractXenoliths in an olivine nephelinite from the McBride Province, North Queensland, include Cr-diopside lherzolites, spinel and garnet websterites, felsic, 2-pyroxene and garnet granulites, and hornblendites. The spinel and garnet websterites are interpreted as crystal segregations from olivine basalt or alkali olivine basalt magma at ∼ 12 kbar followed by isobaric cooling (to approximately 900–1000°C) and subsolidus reequilibration. Garnet and 2-pyroxene granulites are mineralogically and texturally distinct and are considered to represent relatively large degrees of crystallization of basaltic magmas at comparable or slightly lower pressures (8–12 kbar). Mafic and ultramafic xenoliths have been modified to varying degrees following the relatively recent influx of a H2O- and CO2-bearing fluid. Variable amounts of amphibole and mica developed in response to the introduced fluid and it is argued that some hornblendites are the end-products of this process acting on spinel websterites. Felsic and 2-pyroxene granulite xenoliths display only minor evidence of increased PH2O. Mineralogical and textural evidence indicates high-sulphur Ca-rich scapolite in several garnet granulites did not form in response to the increased fluid activities. It is proposed the scapolite was a primary cumulate phase precipitated from alkali basaltic magma under elevated fo2 and fso2 conditions.


1969 ◽  
Vol 106 (6) ◽  
pp. 542-553 ◽  
Author(s):  
P. C. van De Kamp

SUMMARYField, petrographic and chemical studies on the Silurian volcanic rocks of the Mendip Hills show that there are probably 15 or more rock units in the series including andesite and rhyodacite lavas, rhyodacite tuffs, agglomerates, and a dolerite dyke. The predominant rock type is rhyodacite which may be as much as 80 percent of the volcanics. Volcanics of Silurian age from the Tortworth area, Gloucestershire, are of latite-andesite composition.The Mendip rocks have been deuterically altered. Calcite-quartz-laumontite veins are common in fractures in these rocks. The agglomerates are particularly susceptible to weathering and some bombs are extensively altered to clays. Twelve rocks were chemically analysed for 36 elements each. No anomalous base metal concentrations were found in the volcanics although Pb, Zn, and Cu mineralisation is known in the area. K/Rb varies from 202 to 909 in these calc-alkaline rocks.


1979 ◽  
Vol S7-XXI (5) ◽  
pp. 631-641 ◽  
Author(s):  
G. Marcelot ◽  
C. Lefevre ◽  
P. Maillet ◽  
R. C. Maury

Abstract The volcanic series of Mt Rantop and Robertson's Thumb, Erromango Island, New Hebrides, formed by fractional crystallization of orogenic basaltic magma of near-island-arc tholeiitic type. Differentiation was controlled mainly by separation of plagioclase, olivine and clinopyroxene. The Mt Rantop series is predominantly tholeiitic (plagioclase at the liquidus, late appearance of magnetite, pigeonite in microphenocrysts, and Fe and Ti remaining constant or increasing in the early stages of differentiation); those of Robertson's Thumb are mostly calc-alkaline (magnetite at the liquidus, late appearance of plagioclase, olivine quickly becoming unstable, orthopyroxene in phenocrysts and early decrease of Fe and Ti). The compositional differences reflect higher fO <sub>2</sub> and PH <sub>2</sub> O in Robertson's Thumb during fractional crystallization.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 430
Author(s):  
Mirai Takebe ◽  
Masao Ban ◽  
Motohiro Sato ◽  
Yuki Nishi

The geologic and petrologic study of the Kattadake pyroclastics (around 10 ka) from the Zao volcano (NE Japan) revealed the structure of the magma plumbing system and the mixing behavior of the shallow chamber. The Kattadake pyroclastic succession is divided into lower and upper parts by a remarkable discontinuity. All rocks belong to medium-K, calc-alkaline rock series and correspond to ol-cpx-opx basaltic-andesite to andesite with 20–28 vol% phenocrystic modal percentage. All rocks were formed by mixing between andesitic magma and near aphyric basalt. The petrologic features of andesites of lower and upper parts are similar, 59–61 wt% SiO2, having low-An plagioclase and low-Mg pyroxenes, with pre-eruptive conditions corresponding to 960–980 °C, 1.9–3.5 kb, and 1.9–3.4 wt% H2O. However, the basalts were ca. 49.4 wt% SiO2 with Fo~84 olivine in the lower part and 51.8 wt% SiO2 with Fo~81 olivine and high-An plagioclase the in upper one. The percentage of basaltic magma in the mixing process was lower, but the temperature of the basalt was higher in the lower part than the upper one. This means that the shallow magma chamber was reactivated more efficiently by the hotter basalts and that the mixed magma with a 70–80% of melt fraction was formed by a smaller percentage of the basaltic magma.


2021 ◽  
Author(s):  
◽  
Allan John Eggers

<p>Molybdenite mineralization occurs within the Bald Hill Prospect (West Nelson) in brecciated and hornfelsed Greenland Group slates and metagreywackes and associated quartz trondhjemite porphyry minor intrusions (Lyell Porphyry). Potassium argon (K-Ar) ages of the Lyell Porphyry, several granites forming part of the adjacent Karamea Granite batholith (Bald Hill Granites) and mineralized hornfelsic country rocks fall in the range 102-120 Ma (mid-Cretaceous). Adjacent lower Ordovician Greenland Group slates yielded four K-Ar ages in the range 112-226 Ma indicating partial argon outgassing of these older metasediments. The Bald Hill Granites and the Lyell Porphyry granitic rocks belong to separate petrogenic provinces. Bald Hill Granites forming the western margin of the Karamea Granite batholith occur as a suite of foliated, medium-grained, muscovite-bearing leucogranites, pink microgranites and biotite-granites. Chemically these rocks are peraluminous-potash granites with 72-75% SiO2, MgONa2O with Rb > Sr and always contain more than 30% normative quartz and 3% normative corundum. In contrast, the Lyell Porphyry rocks intruding both Greenland Group and Bald Hill Granite country rocks, form a series of small, high-level plutons and cross-cutting dykes of quartz trondhjemite, granodiorite, quartz diorite, lamprophyre and quartz-bearing gabbroporphyry. Chemically the Lyell Porphyry intrusive rocks are soda-rich calc-alkaline granitoids containing 46-70% SiO2, >1% MgO, >2.2% CaO, with Na2O>K2O and Sr>Rb with less than 28% normative quartz and less than 2% normative corundum. From their studies of granite batholiths in southeastern Australia, Chappell and White (1974) recognise two contrasting granitoid types called I-type and S-type granites. The Lyell Porphyry and several other intrusive stocks associated with molybdenum mineralization in West Nelson and North Westland are shown to correspond to I-type granites, in contrast to the Karamea batholith granites (including Bald Hill Granites) which conform to S-type granites. Sulphur isotopic analyses of mineralization for ten molybdenum prospects in West Nelson indicate uniformly high temperatures of mineralization in the range 400° to 500°C, with a probable magmatic source for sulphur. The Bald Hill and other S-type granites forming the Karamea batholith were probably formed by the ultrametamorphism of crustal sedimentary material. The Lyell Porphyry and other molybdenum-bearing calc-alkaline intrusive stocks represent melt phases of deeper origin intruding the overlying granites and sediments. The emplacement of these stocks appears to equate with north-south lineaments and large scale circular features in the granite terranes of West Nelson. The geological setting, age, petrological characteristics and molybdenite mineralization of the Lyell Porphyry and Bald Hill Granites are similar to that of other West Nelson occurrences. All are associated with mid-Cretaceous minor granitic porphyry intrusions, emplaced in Paleozoic metasediments, close to the margins of the Karamea and Separation Point batholiths.</p>


Sign in / Sign up

Export Citation Format

Share Document