Edge dislocations in fibrous grunerite

1981 ◽  
Vol 44 (335) ◽  
pp. 287-291
Author(s):  
E. J. W. Whittaker ◽  
B. A. Cressey ◽  
J. L. Hutchison

AbstractSections perpendicular to [001] of ion-thinned specimens of fibrous grunerite (amosite) have been examined by high-resolution transmission electron microscopy. In this orientation, two kinds of dislocation have been observed with about equal frequency. One lies on [001] and has a Burgers vector a. The other is on [001] and has a Burgers vector ½a+½b Interpretation of features associated with these dislocations has been assisted by the use of two-dimensional models of I-beam cross-sections which can be interlocked to simulate the possible modes of stacking.

Author(s):  
Sam Ick Son ◽  
Su Jin Chung

AbstractThe relation between the domains and domain boundaries of multiple twins of diamond were investigated by the electron back scatter diffraction (EBSD) method and high resolution transmission electron microscopy (HRTEM). Multiple twinned diamonds have two types of icosahedral morphologies. One is an almost perfect icosahedron in which all of the faces are {111} faces. The other is a hollow icosahedron similar to one of the Kepler-Poinsot polyhedrons. The indented negative trigonal faces are formed from the {100} faces of a cube. It was confirmed that the convex edges of the twinned icosahedron corresponded to the Σ3 boundaries, whereas the concave edges were assigned to the Σ9 twin boundary by means of the EBSD analysis.It was confirmed from the HRTEM image that a series of dislocations compensate for the mismatching angle which occurs after five successive twinning.


2008 ◽  
Vol 23 (8) ◽  
pp. 2188-2194 ◽  
Author(s):  
Yuki Tokumoto ◽  
Naoya Shibata ◽  
Teruyasu Mizoguchi ◽  
Masakazu Sugiyama ◽  
Yukihiro Shimogaki ◽  
...  

The structure and configuration of threading dislocations (TDs) in AlN films grown on (0001) sapphire by metal–organic vapor phase epitaxy (MOVPE) were characterized by high-resolution transmission electron microscopy (HRTEM). It was found that the TDs formed in the films were mainly the perfect edge dislocations with the Burgers vector of b = ⅓〈11¯20〉. The majority of the edge TDs were not randomly formed but densely arranged in lines. The arrays of the edge TDs were mainly observed on the {11¯20} and {10¯10} planes. These two planes showed different configurations of TDs. TD arrays on both of these planes constituted low-angle boundaries. We suggest that these TDs are introduced to compensate for slight misorientations between the subgrains during the film growth.


2005 ◽  
Vol 884 ◽  
Author(s):  
Carmen M. Andrei ◽  
John C. Walmsley ◽  
Randi Holmestad ◽  
Gianluigi A. Botton ◽  
Sesha S. Srinivasan ◽  
...  

AbstractTi doped NaAlH4 hydride is proposed as a reversible hydrogen storage material. In this work, the microstructure of NaAlH4 with 2% TiCl3 additive was studied after 5 hydrogen cycles using a combination of transmission electron microscopy (TEM) techniques including energy dispersive spectroscopy (EDS) X-ray analysis. Selected area diffraction and high-resolution (HR) imaging confirmed the presence of the NaH phase in the material. Electron diffraction was dominated by Al. HRTEM showed the presence of edge dislocations, which might influence the hydrogen diffusivity process in these materials.


1997 ◽  
Vol 3 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Bernard Q. Li ◽  
Franklin E. Wawner

Abstract: This investigation presents the interaction of dislocations and semicoherent precipitates (Ω phase) in an Al-Cu-Mg-Ag alloy. The study shows that the semicoherent precipitate is cut by dislocations during deformation. Conventional transmission electron microscopy (TEM) and high resolution TEM (HRTEM) observations demonstrate that shearing of precipitates by dislocations occurs by multiple cutting in the precipitate. The step height caused by cutting on the Ω precipitate is only several atomic layers of the Ω phase. The Ω phase is strengthened after shearing by dislocations. A strengthening mechanism is proposed on the basis of this observation. The strengthening mechanism is not only applicable to the Ω precipitate in Al-Cu-Mg-Ag alloys but also to the other semicoherent precipitates in other alloys.


1997 ◽  
Vol 12 (8) ◽  
pp. 1939-1941 ◽  
Author(s):  
Y-C. Lu ◽  
H. Kung ◽  
A. J. Griffin ◽  
M. A. Nastasi ◽  
T. E. Mitchell

Dislocations have been observed in deformed Cu/Nb nanolayer composites of wavelength 17 and 7 nm. The dislocations thread through the Cu/Nb interfaces even though there is a change of Burgers vector. Conventional and high resolution transmission electron microscopy studies show that the in-plane bowing direction of these dislocations in the Cu layers is opposite to that in the Nb layers, so that the dislocations appear to zig-zag. These observations are explained by the presence of residual tensile stresses in Cu and residual compressive stresses in Nb, which make dislocations bow in opposite directions in the alternating layers.


2002 ◽  
Vol 17 (12) ◽  
pp. 3117-3126 ◽  
Author(s):  
Y. L. Qin ◽  
C. L. Jia ◽  
K. Urban ◽  
J. H. Hao ◽  
X. X. Xi

The dislocation configurations in SrTiO3 thin films grown epitaxially on LaAlO3 (100) substrates were studied by conventional and high-resolution transmission electron microscopy. Misfit dislocations had, in most cases, a Burgers vector a〈100〉 and line directions of 〈100〉 These dislocations constitute orthogonal arrays of parallel dislocations at the interface, relieving the lattice mismatch between SrTiO3 and LaAlO3. Threading dislocations were found to be the major defects in the films. Two types of threading dislocations with the Burgers vectors a〈100〉?and a〈100〉?were identified. The relations of these threading dislocations with the misfit dislocations were investigated and are discussed in this paper.


2003 ◽  
Vol 9 (6) ◽  
pp. 509-515 ◽  
Author(s):  
Jing Li ◽  
X. Gu ◽  
T.C. Hufnagel

We have used fluctuation microscopy to reveal the presence of structural order on length scales of 1–2 nm in metallic glasses. We compare results of fluctuation microscopy measurements with high resolution transmission electron microscopy and electron diffraction observations on a series of metallic glass samples with differing degrees of structural order. The agreement between the fluctuation microscopy results and those of the other techniques is good. In particular, we show that the technique used to make thin specimens for electron microscopy affects the structure of the metallic glass, with ion thinning inducing more structural order than electropolishing. We also show that relatively minor changes in the composition of the alloy can have a significant effect on the medium-range order; this increased order is correlated with changes in mechanical behavior.


Sign in / Sign up

Export Citation Format

Share Document