Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions

1996 ◽  
Vol 60 (399) ◽  
pp. 243-257 ◽  
Author(s):  
A. D. Edgar ◽  
L. A. Pizzolato ◽  
J. Sheen

AbstractIn reviewing the distribution of fluorine in igneous rocks it is clear that F abundance is related to alkalinity and to some extent to volatile contents. Two important F-bearing series are recognized: (1) the alkali basalt—ultrapotassic rocks in which F increases with increasing K2O and decreasing SiO2 contents; and (2) the alkali basalt—phonolite—rhyolite series with F showing positive correlation with both total alkalis and SiO2. Detailed studies of series (1) show that F abundance in ultrapotassic magmas (lamproite, kamafugite, lamprophyre) occurs in descending order in the sequence phlogopite>apatite>amphibole>glass. Fluorine contents in the same minerals from fresh and altered mantle xenoliths may be several orders of magnitude less than those in the host kamafugite. For many lamproites, F contents correlate with higher mg# suggesting that F is highest in the more primitive magmas.Experiments at mantle conditions (20 kbar, 900–1400°C) on simplified F-bearing mineral systems containing phlogopite, apatite, K-richterite, and melt show that F is generally a compatible element. Additionally, low F abundance in minerals from mantle xenoliths suggests that F may not be available in mantle source regions and hence is unlikely to partition into the melt phase on partial melting. Melting experiments on the compositions of F-free and F-bearing model phlogopite harzburgite indicate that even small variations in F content produce melts similar in composition to those of lamproite.

Geologos ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 51-64
Author(s):  
Mohammad Boomeri ◽  
Rahele Moradi ◽  
Sasan Bagheri

AbstractThe Oligocene Lar igneous complex is located in the Sistan suture zone of Iran, being emplaced in Paleocene to Eocene flysch-type rocks. This complex includes mainly intermediate K-rich volcanic (trachyte, latite and andesite) and plutonic (syenite and monzonite) rocks that belong to shoshonitic magma. The geochemical characteristics of the Lar igneous complex, such as an enrichment of LREE and LILE relative to HREE and HFSE, respectively, a negative anomaly of Ti, Ba and Nb and a positive anomaly of Rb and Th are similar to those of arc-type igneous rocks. Tectonic discrimination diagrams also show that rocks of the Lar igneous complex fall within the arc-related and post-collisional fields and K-enrichment of these rocks confirm the post-collisional setting. Based on geochemical features, the Lar igneous complex magma was derived from partial melting of a phlogopite-bearing, enriched and metasomatised lithospheric mantle source and the magma was affected by some evolutionary processes like fractional crystallisation and crustal contamination.


The scale, timing and development of mantle heterogeneity beneath southern Africa is assessed by reference to data obtained from mantle derived igneous rocks and, to a lesser extent, from peridotites contained in kimberlite. Sr isotope data for ultrabasic and basic igneous rocks ranging in age from 3.5 Ga komatiites to Tertiary olivine melilitites indicate that heterogeneity existed at 3 Ga and was well established by 2 Ga, and also suggest progressive development of variability in Sr isotope ratios in the mantle source regions involved. Detailed evaluation of Sr isotope and incompatible element and inter-element ratios, together with rare earth element patterns, of the widespread Jurassic Karroo volcanics shows that the overall compositional variability of these volcanics is best explained by (horizontal) mantle heterogeneity. Both depletion and enrichment pre-Karroo processes appear to have affected the parental mantle source regions. Evidence for such enrichment is provided by kimberlite peridotite nodules that have been subjected to mantle metasomatic processes, leading to the development of phlogopite and the amphibole potassic richterite, with consequent enrichment of incompatible elements.


Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 971-975
Author(s):  
Valentin Casola ◽  
Lydéric France ◽  
Albert Galy ◽  
Nordine Bouden ◽  
Johan Villeneuve

Abstract Carbonatites are unusual, carbon-rich magmas thought to form either by the melting of a carbon-rich mantle source or by low-degree partial melting of a carbon-poor (<80 ppm C) mantle followed by protracted differentiation and/or immiscibility. Carbonate-bearing mantle xenoliths from Oldoinyo Lengai (East African Rift), the only active volcano erupting carbonatites, have provided key support for a C-rich mantle source. Here, we report unique microscale O and C isotopic analyses of those carbonates, which are present as interstitial grains in the silicate host lava, veins in the xenoliths, and pseudo-inclusions in olivine xenoliths. The δ18O values vary little, from 19‰ to 29‰, whereas δ13C values are more variable, ranging from –23‰ to +0.5‰. We show that such carbonate δ18O values result from the low-temperature precipitation of carbonate in equilibrium with meteoric water, rather than under mantle conditions. In this framework, the observed δ13C values can be reproduced by Rayleigh distillation driven by carbonate precipitation and associated degassing. Together with petrological evidence of a physical connection between the three types of carbonates, our isotopic data support the pedogenic formation of carbonates in the studied xenoliths by soil-water percolation and protracted crystallization along xenolith cracks. Our results refute a mechanism of C enrichment in the form of mantle carbonates in the mantle beneath the Natron Lake magmatic province and instead support carbonatite formation by low-degree partial melting of a C-poor mantle and subsequent protracted differentiation of alkaline magmas.


2000 ◽  
Vol 12 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Andrea Orlando ◽  
Sandro Conticelli ◽  
Pietro Armienti ◽  
Daniele Borrini

Experiments to reconstruct the liquidus curve and establish the phase relationships of a basanite (Mg# = 72) from the McMurdo Volcanic Group, (thought to represent a nearly primary magma) used 1.0– 3.0 GPa and 1175–1550°C. The results suggest that this basanite could be generated by partial melting either of a spinel Iherzolite (at P = 1.5–2.0 GPa and T = 1390–1490°C) or of a garnet pyroxenite (at P > 3.0 GPa and T > 1550°C) source. Several lines of petrological and geochemical evidence support the latter hypothesis. Moreover, experimental results indicate the presence of mica in the source if it is assumed that the magma lost some water during its ascent to the surface. This is supported by the presence of mica and amphibole-bearing mantle xenoliths hosted in the most primitive volcanic rocks of the McMurdo Volcanic Group. These results and observations suggest that the source of magmas underwent metasomatism prior to partial melting.


2021 ◽  
Vol 176 (9) ◽  
Author(s):  
Fred A. Davis ◽  
Elizabeth Cottrell

AbstractBasalts and peridotites from mid-ocean ridges record fO2 near the quartz-fayalite-magnetite buffer (QFM), but peridotite partial melting experiments have mostly been performed in graphite capsules (~ QFM-3), precluding evaluation of ferric iron’s behavior during basalt generation. We performed experiments at 1.5 GPa, 1350–1400 °C, and fO2 from about QFM-3 to QFM+3 to investigate the anhydrous partitioning behavior of Fe2O3 between silicate melts and coexisting peridotite mineral phases. We find spinel/melt partitioning of Fe2O3 ($${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{spl}/\mathrm{melt}}$$ D Fe 2 O 3 spl / melt ) increases as spinel Fe2O3 concentrations increase, independent of increases in fO2, and decreases with temperature, which is consistent with new and previous experiments at 0.1 MPa. We find $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$ D Fe 2 O 3 opx / melt = 0.63 ± 0.10 and $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{cpx}/\mathrm{melt}}$$ D Fe 2 O 3 cpx / melt = 0.78 ± 0.30. MORB Fe2O3 and Na2O concentrations are consistent with a modeled MORB source with Fe2O3 = 0.48 ± 0.03 wt% (Fe3+/ΣFe = 0.053 ± 0.003) at potential temperatures (TP) from 1320 to 1440 °C. The temperature-dependence of the $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{spl}/\mathrm{melt}}$$ D Fe 2 O 3 spl / melt function alone allows ~ 40% of the variation in MORB compositions. If we allow $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$ D Fe 2 O 3 opx / melt and $${D}_{\mathrm{Fe}2\mathrm{O}3}^{\mathrm{opx}/\mathrm{melt}}$$ D Fe 2 O 3 opx / melt to also vary with temperature by tying them to spinel Fe2O3 through intermineral partitioning, then all the MORB data are within error of the model. Our model Fe2O3 concentration for the MORB source would require that the convecting mantle be more oxidized at a given depth than recorded by continental mantle xenoliths. Our result is supported by thermodynamic models of mantle with Fe3+/ΣFe = 0.03 that predict fO2 of ~ QFM-1 near the garnet-spinel transition, which is inconsistent with fO2 of MORB. Our results support previous suggestions that redox melting may occur between 200 and 250 km depth.


1987 ◽  
Vol 24 (8) ◽  
pp. 1679-1687 ◽  
Author(s):  
Dante Canil ◽  
Mark Brearley ◽  
Christopher M. Scarfe

One hundred mantle xenoliths were collected from a hawaiite flow of Miocene–Pliocene age near Rayfield River, south-central British Columbia. The massive host hawaiite contains subrounded xenoliths that range in size from 1 to 10 cm and show protogranular textures. Both Cr-diopside-bearing and Al-augite-bearing xenoliths are represented. The Cr-diopside-bearing xenolith suite consists of spinel lherzolite (64%), dunite (12%), websterite (12%), harzburgite (9%), and olivine websterite (3%). Banding and veining on a centimetre scale are present in four xenoliths. Partial melting at the grain boundaries of clinopyroxene is common and may be due to natural partial melting in the upper mantle, heating by the host magma during transport, or decompression during ascent.Microprobe analyses of the constituent minerals show that most of the xenoliths are well equilibrated. Olivine is Fo89 to Fo92, orthopyroxene is En90, and Cr diopside is Wo47En48Fs5. More Fe-rich pyroxene compositions are present in some of the websterite xenoliths. The Mg/(Mg + Fe2+) and Cr/(Cr + Al + Fe3+) ratios in spinel are uniform in individual xenoliths, but they vary from xenolith to xenolith. Equilibration temperatures for the xenoliths are 860–980 °C using the Wells geothermometer. The depth of equilibration estimated for the xenoliths using geophysical and phase equilibrium constraints is 30–40 km.


2021 ◽  
Author(s):  
Alexey Tarasov ◽  
Igor Sharygin ◽  
Alexander Golovin ◽  
Anna Dymshits ◽  
Dmitriy Rezvukhin

<p>For the first time, snapshots of crystallized melts in olivine of sheared garnet peridotite xenoliths from the Bultfontein kimberlite pipe have been studied. This type of xenoliths represents the deepest mantle rocks derived from the base of lithosphere (at depths from 110 to 230 km for various ancient cratons). According to different models, such type of inclusions (secondary) in mantle minerals can be interpreted as relics of the most primitive (i.e., close-to-primary) kimberlite melt that infiltrated into sheared garnet peridotites. In general, these secondary inclusions are directly related to kimberlite magmatism that finally formed the Bultfontein diamond deposits. The primary/primitive composition of kimberlite melt is poorly constrained because kimberlites are ubiquitously contaminated by xenogenic material and altered by syn/post-emplacement hydrothermal processes. Thus, the study of these inclusions helps to significantly advance in solving numerous problems related to the kimberlite petrogenesis.</p><p>The unexposed melt inclusions were studied by using a confocal Raman spectroscopy. In total, fifteen daughter minerals within the inclusions were identified by this method. Several more phases give distinct Raman spectra, but their determination is difficult due to the lack of similar spectra in the databases. Various carbonates and carbonates with additional anions, alkali sulphates, phosphates and silicates were determined among daughter minerals in the melt inclusions: calcite CaCO<sub>3</sub>, magnesite MgCO<sub>3</sub>, dolomite CaMg(CO<sub>3</sub>)<sub>2</sub>, eitelite Na<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, nyerereite (Na,K)<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, gregoryite (Na,K,Ca)<sub>2</sub>CO<sub>3</sub>, K-Na-Ca-carbonate (K,Na)<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>, northupite Na<sub>3</sub>Mg(CO<sub>3</sub>)<sub>2</sub>Cl, bradleyite Na<sub>3</sub>Mg(PO<sub>4</sub>)(CO<sub>3</sub>), burkeite Na<sub>6</sub>(CO<sub>3</sub>)(SO<sub>4</sub>)<sub>2</sub>, glauberite Na<sub>2</sub>Ca(SO<sub>4</sub>)<sub>2</sub>, thenardite Na<sub>2</sub>SO<sub>4</sub>, aphthitalite K<sub>3</sub>Na(SO<sub>4</sub>)<sub>2</sub>, apatite Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(OH,Cl,F) and tetraferriphlogopite KMg<sub>3</sub>FeSi<sub>3</sub>O<sub>10</sub>(F,Cl,OH). Note that carbonates are predominant among the daughter minerals in the melt inclusions. Moreover, there are quite a lot of alkali-rich daughter minerals within the inclusions as well. During the last decade, some research groups using different approaches proposed a model of carbonate/alkali‑carbonate composition of kimberlite melts in their source regions. This model contradicts to the generally accepted ultramafic silicate nature of parental kimberlite liquids. This study is a direct support of a new model of carbonatitic composition of kimberlite melts and also shows that alkali contents in kimberlite petrogenesis are usually underestimated.</p><p>This work was supported by the Russian Foundation for Basic Research (grant No. 20-35-70058).</p>


Sign in / Sign up

Export Citation Format

Share Document