Coesite from quartz-jadeitite in the Dabie Mountains, Eastern China

1996 ◽  
Vol 60 (401) ◽  
pp. 659-662 ◽  
Author(s):  
Wen Su ◽  
Shutong Xu ◽  
Laili Jiang ◽  
Yican Liu

The Dabie Mountains is a collisional orogen between the North China and Yantze Continental plates. It is composed, from south to north, of the foreland fold and thrust belt alternated with molasse basin, the subducted cover and basement of the Yangtze continental plate, the meta-ophiolitic melange belt, the forearc meta-flysch nappe (bounded by southward and northward thrust belts) in which there may be a buried volcanic arc and a relict back-arc basin (Fig. 1A) (Xu et al., 1992a, 1994).

2019 ◽  
Vol 132 (5-6) ◽  
pp. 1235-1256
Author(s):  
Peng Feng ◽  
Lu Wang ◽  
Michael Brown ◽  
Songjie Wang ◽  
Xiawen Li

Abstract The exotic Haiyangsuo complex is structurally part of the Sulu belt but its contact relationship with surrounding Sulu gneisses is unexposed and therefore unknown, making its affinity uncertain. It comprises gneisses with in-source leucosomes that host minor metabasite bodies; both are cut by leucogranite dikes. In this study, we determine the timing and petrogenesis of leucosomes and leucogranites and assess the tectonic affinity of the complex based on data from gneisses and metabasites. Most zircon from gneisses and leucosomes has oscillatory-zoned cores with CL-bright overgrowth rims, but some has CL-dark cores or mantles between cores and rims. CL-dark and bright zircon yield weighted mean ages of ca. 1817–1812 Ma. CL-dark zircon has flat heavy rare earth element (HREE) patterns and crystallization temperatures of 829–875 °C, suggesting metamorphic growth, whereas rims have steep HREE patterns but a similar range of crystallization temperatures, suggesting growth from anatectic melt; εHf (t = 1813 Ma) of –18.3 to –10.8 indicates a North China Craton source. Magmatic zircon from metabasites yields ages of ca. 825 Ma, similar to those of scattered metabasite occurrences in the North China Craton. Paleoproterozoic zircon cores were scavenged during magma ascent. By contrast, zircon cores from the leucogranites yield concordant dates of 776–701 Ma, consistent with protolith ages in the Sulu belt, whereas overgrowth mantles and rims yield weighted mean ages of ca. 220 Ma and 162 Ma, respectively. Both mantles and rims host multiphase solid inclusions, representing former melt, suggesting anatexis and crystallization of zircon first during initial decompression and then during orogenic collapse of the Sulu belt; whole-rock Nd and Sr isotope compositions implicate the Sulu belt gneisses as the source of these melts. Our interpretation of these data is that the Haiyangsuo complex has an early geologic history similar to the Jiaobei terrane from the southeastern part of the North China Craton and was incorporated into the Sulu belt during Triassic collision of the Yangtze and North China Cratons. The two stages of melting relate to Upper Triassic early exhumation and Upper Jurassic late-stage orogenic collapse, during which the leucogranite magma was derived from a source similar to one elsewhere in the Sulu belt such as the subducted Yangtze Craton and not the North China Craton. This shows that during continental collisions, crust from the upper plate may be dragged into the subduction channel, deformed, and subsequently exhumed in association with partial melting of the crust.


2021 ◽  
Vol 58 (1) ◽  
pp. 50-66
Author(s):  
Yang Dong ◽  
Jingdang Liu ◽  
Yanfei Zhang ◽  
Shiyong Dou ◽  
Yanbin Li ◽  
...  

Mesozoic magmatic rocks are widely distributed in the North China Craton (NCC) and are crucial to understanding the timing, location, and geodynamic mechanisms of lithospheric thinning of the NCC. In this study, we report geochronological, petrogeochemical, and Lu–Hf isotopic data for adakitic granitoids from different parts of Xiuyan pluton in the Liaodong Peninsula, aiming to constrain their magma sources, petrogenesis, and tectonic implications. The adakites are metaluminous to weakly peraluminous and are classified as high-K calc-alkaline I-type granite with Early Cretaceous zircon U–Pb ages of 129–126 Ma. They exhibit adakite-like geochemical characteristics, such as high Sr content and low Yb and Y contents, coupled with high Sr/Y and no pronounced Eu anomalies. They are enriched in Rb, U, and light rare-earth elements and are depleted in Ta, Nb, P, and Ti. The adakites from the eastern part of the pluton have low εHf(t) values (–8.5 to –4.0) with old TDM2 ages (1.57–1.31 Ga), indicating they were derived from the lower crust containing juvenile mantle-derived materials. In contrast, adakites from the northern part of the pluton have lower εHf(t) values (–19.7 to –16.6) with older TDM2 ages (2.21–2.03 Ga), indicating that they were derived mainly from an ancient crust. Our results show that both adakitic magmas were derived from partial melting of delaminated lower crust. Their relatively high MgO and Ni contents and Mg# values indicate that the melts interacted with mantle peridotites. The lower crust delamination beneath the Liaodong Peninsula resulted from paleo-Pacific plate subduction during the Early Cretaceous, which resulted in thinning of Mesozoic crust in the Xiuyan area.


2005 ◽  
Vol 69 (4) ◽  
pp. 509-520 ◽  
Author(s):  
Shutong Xu ◽  
Yican Liu ◽  
Guanbao Chen ◽  
Shouyuan Ji ◽  
Pei Ni ◽  
...  

AbstractWe have found >10 in situ microdiamonds in thin sections of eclogites from the Dabie and Su-Lu regions of central eastern China since the first occurrence of microdiamond in eclogites from the Dabie Mountains (DMT) reported in 1992. The microdiamonds are found not only in the central part but also in the northern part of the DMT. Several free crystals have been recovered from the crushed eclogites from the central DMT. Most in situ microdiamonds are inclusions in garnets but a few larger ones are intergranular. Most of the diamondiferous eclogites in the central part of the DMT are associated with coesite. Most importantly, the observation of microdiamonds in northern Dabie lead us to question the supposition that this is a low-P metamorphic terrane. All the diamondiferous eclogites from both the north and central DMT are of continental affinity as demonstrated by their negative εNd values. Therefore, both the north and central eclogite belts in the DMT are considered to be from the deep subducted terrane. Five in situ microdiamonds and two free crystals are first reported in this paper. The dimensions of the in situ microdiamonds are 30–180 µm and the free crystals are up to 400–700 mm across. All the microdiamonds are confirmed as such by Raman spectroscopy. The results of an infrared spectroscopic investigation on two larger free crystals and two in situ microdiamonds show that all the microdiamonds from both the Dabie and Su-Lu regions are mixed types IaA and IaB diamonds and there is no indication of any synthetic microdiamonds in our samples because such synthetic microdiamonds are always rich in type Ib.


2017 ◽  
Vol 155 (5) ◽  
pp. 1040-1062 ◽  
Author(s):  
LI-QIANG YANG ◽  
YILDIRIM DILEK ◽  
ZHONG-LIANG WANG ◽  
ROBERTO F. WEINBERG ◽  
YUE LIU

AbstractThe Jurassic Linglong granites, intrusive into the North China Craton (NCC) in eastern China, provide a critical record of the first major episode of lithospheric-scale extension and magmatism in NE China during Mesozoic time. Our U–Pb zircon dating reveals that the Linglong granites were emplaced during 161–158 Ma, shortly after the inception of a shallow subduction of the Palaeo-Pacific plate beneath East Asia during Middle Jurassic time. These granites have high alkali contents (K2O + Na2O = 8–9 wt%), low MgO and Mg no. values and variable Cr–Ni abundances. Their relatively high Ba and Sr concentrations, relatively low heavy rare Earth element (HREE) and strongly fractionated REE patterns characterize them as high Ba–Sr granites. The negative whole-rock εNd(t) values ranging from −22.4 to −10.9 and wide-ranging zircon εHf(t) values of −39.1 to −1.5 suggest that magmas of the Linglong granites were produced by partial melting of a garnet-amphibolite-bearing lower crust of the Jiaobei Terrane and by re-melting of the Triassic ultrahigh-pressure (UHP) metamorphic rocks and alkaline suites of the Sulu Terrane. The occurrence in the granitic rocks of inherited zircons of the Neoarchaean, Palaeoproterozoic, Neoproterozoic, Palaeozoic and Triassic ages suggests that magmas of the Linglong granites interacted with the ancient crust in these terranes during their ascent. Asthenospheric upwelling, induced by the steepening and rapid rollback of the Palaeo-Pacific slab during Late Jurassic time, provided the heat source for the inferred lower crustal melting. Trench migration and thermal weakening of the crust caused extensional deformation and thinning in the eastern part of the NCC.


2019 ◽  
Vol 131 (11-12) ◽  
pp. 1889-1906 ◽  
Author(s):  
Özgür Kandemir ◽  
Kenan Akbayram ◽  
Mehmet Çobankaya ◽  
Fatih Kanar ◽  
Şükrü Pehlivan ◽  
...  

Abstract The Eastern Pontide Arc, a major fossil submarine arc of the world, was formed by northward subduction of the northern Neo-Tethys lithosphere under the Eurasian margin. The arc’s volcano-sedimentary sequence and its cover contain abundant fossils. Our new systematical paleontological and structural data suggest the Late Cretaceous arc volcanism was initiated at early-middle Turonian and continued uninterruptedly until the end of the early Maastrichtian, in the northern part of the Eastern Pontides. We measured ∼5500-m-thick arc deposits, suggesting a deposition rate of ∼220 m Ma–1 in ∼25 m.y. We have also defined four different chemical volcanic episodes: (1) an early-middle Turonian–Santonian mafic-intermediate episode, (2) a Santonian acidic episode; when the main volcanic centers were formed as huge acidic domes-calderas comprising the volcanogenic massive sulfide ores, (3) a late Santonian–late Campanian mafic-intermediate episode, and (4) a late Campanian–early Maastrichtian acidic episode. The volcaniclastic rocks were deposited in a deepwater extensional basin until the late Campanian. Between late Campanian and early Maastrichtian, intra-arc extension resulted in opening of back-arc in the north, while the southern part of the arc remained active and uplifted. The back-arc basin was most probably connected to the Eastern Black Sea Basin. In the back-arc basin, early Maastrichtian volcano-sedimentary arc sequence was transitionally overlain by pelagic sediments until late Danian suggesting continuous deep-marine conditions. However, the subsidence of the uplifted-arc-region did not occur until late Maastrichtian. We have documented a Selandian–early Thanetian (57–60 Ma) regional hiatus defining the closure age of the İzmir-Ankara-Erzincan Ocean along the Eastern Pontides. Between late Thanetian and late Lutetian synorogenic turbidites and postcollisional volcanics were deposited. The Eastern Pontide fold-and-thrust belt started to form at early Eocene (ca. 55 Ma) and thrusting continued in the post-Lutetian times.


Author(s):  
B. Grasemann ◽  
D.A. Schneider ◽  
K. Soukis ◽  
V. Roche ◽  
B. Hubmann

The paleogeographic position of the central Dodecanese Islands at the transition between the Aegean and Anatolian plates plays a considerable role in understanding the link between both geologically unique domains. In this study, we investigate the tectonic history of the central Dodecanese Islands and the general correlation with the Aegean and western Anatolian and focus on the poorly studied islands of Kalymnos and Telendos. Three different major tectonic units were mapped on both islands from bottom to top: (1) The Kefala Unit consists of late Paleozoic, fossil-rich limestones, which have been deformed into a SE-vergent fold-and-thrust belt sealed by an up to 200-m-thick wildflysch-type olistostrome with marble and ultramafic blocks on a scale of tens of meters. (2) The Marina Basement Unit consists of a Variscan amphibolite facies basement with garnet mica schists, quartzites, and amphibolites. (3) Verrucano-type formation violet shales and Mesozoic unmetamorphosed limestones form the Marina Cover Unit. Correlation of these units with other units in the Aegean suggests that Kalymnos is paleogeographically located at the southern margin of the Pelagonian domain, and therefore it was in a structurally upper tectonic position during the Paleogene Alpine orogeny. New white mica 40Ar/39Ar ages confirm the Carboniferous deformation of the Marina Basement Unit followed by a weak Triassic thermal event. Single-grain white mica 40Ar/39Ar ages from pressure solution cleavage of the newly defined Telendos Thrust suggest that the Marina Basement Unit was thrusted toward the north on top of the Kefala Unit in the Paleocene. Located at a tectonically upper position, the units exposed in the central Dodecanese escaped subduction and the syn-orogenic, high-pressure metamorphism. However, these units were affected by post-orogenic extension, and the contact between the Marina Basement Unit and the non-metamorphic Marina Cover Unit has been reactivated by the cataclastic top-to-SSW, low-angle Kalymnos Detachment. Zircon (U-Th)/He ages from the Kefala and Marina Basement Units are ca. 30 Ma, which indicates that exhumation and cooling below the Kalymnos Detachment started in the Oligocene. Conjugate brittle high-angle normal fault systems, which resulted in the formation of four major WNW-ESE−trending graben systems on Kalymnos, localized mainly in the Marina Cover Unit and probably rooted in the mechanically linked Kalymnos Detachment. Since Oligo-Miocene deformation in the northern Dodecanese records top-to-NNE extension and the Kalymnos Detachment accommodated top-to-SSW extension, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent.


2021 ◽  
pp. jgs2020-231
Author(s):  
Zhen Yan ◽  
Wenjiao Xiao ◽  
Jonathan C. Aitchison ◽  
Chao Yuan ◽  
Chuanzhou Liu ◽  
...  

The accretionary complex (AC) in the North Qilian belt comprises coherent and chaotic units consisting of bedded cherts, pelagic mudstone, shale, turbidites, basalt, limestone, blueschist, eclogite lenses, and ophiolitic mélange. Cherts from the Donggoukou and Biandukou outcrops in the north of blueschist belt contain abundant Middle Ordovician radiolarians together with rare conodonts. Well-preserved radiolarians also occur in cherts associated with high-pressure/low-temperature rocks in the Baijingsi AC outcrop. Conodonts of Floian-Dapingian age and Middle Ordovician radiolarians also occur in the Shihuigou AC. Geochemical analysis of 23 cherts reveals variable SiO2 contents (74.56-97.16 wt%) and high mean Al/(Al + Fe + Mn) ratios ranging from 0.35 to 0.85, indicating a non-hydrothermal origin. Ce/Ce* and LaN/YbN ratios of 0.70-1.22 and 0.67-1.59 are high and variable, similar to those of associated muddy siltstone (0.59-0.96 and 1.14-1.55, respectively), suggesting near trench deposition with associated terrigenous input. Together with the metamorphic ages of blueschists and eclogites, the North Qilian belt AC formed by accretion of ocean plate stratigraphic successions in response to subduction of the Proto-Tethyan Ocean prior to 450 Ma.Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts


2018 ◽  
Author(s):  
Yang Xia ◽  
Dabo Guan ◽  
Jing Meng ◽  
Yuan Li ◽  
Yuli Shan

Abstract. Serious haze can cause contaminant diseases that trigger productive labour time by raising mortality and morbidity rates in cardiovascular and respiratory diseases. Health studies rarely consider macroeconomic impacts of industrial interlinkages while disaster studies seldom involve air pollution and its health consequences. This study adopts a supply-driven input-output model to estimate the economic loss resulting from disease-induced working time reduction across 30 Chinese provinces in 2012 using the most updated Chinese Multiregional Input-Output Table. Results show total economic loss of 398.23 billion Yuan (~1 % of China's GDP in 2012) with the majority comes from Eastern China and Mid-South. Total number of affected labourers amounts at 82.19 million. Cross-regional economic impact analysis indicates that Mid-South, North China and Eastern China entail the majority of regional indirect loss. Indeed, most indirect loss in North China, Northwest and Southwest can be attributed to Manufacturing and Energy in other regions while loss in Eastern China, Mid-South and Northeast largely originate from Coal and Mining in other regions. At the sub-industrial level, most inner-regional loss in North China and Northwest originate from Coal and Mining, in Eastern China and Southwest from Equipment and Energy, and in Mid-South from Metal and Non-metal. These findings highlight the potential role of geographical distance in regional interlinkages and regional heterogeneity in inner- and outer-regional loss due to distinctive regional economic structures and dependences between the North and South.


Sign in / Sign up

Export Citation Format

Share Document