From arc evolution to arc-continent collision: Late Cretaceous–middle Eocene geology of the Eastern Pontides, northeastern Turkey

2019 ◽  
Vol 131 (11-12) ◽  
pp. 1889-1906 ◽  
Author(s):  
Özgür Kandemir ◽  
Kenan Akbayram ◽  
Mehmet Çobankaya ◽  
Fatih Kanar ◽  
Şükrü Pehlivan ◽  
...  

Abstract The Eastern Pontide Arc, a major fossil submarine arc of the world, was formed by northward subduction of the northern Neo-Tethys lithosphere under the Eurasian margin. The arc’s volcano-sedimentary sequence and its cover contain abundant fossils. Our new systematical paleontological and structural data suggest the Late Cretaceous arc volcanism was initiated at early-middle Turonian and continued uninterruptedly until the end of the early Maastrichtian, in the northern part of the Eastern Pontides. We measured ∼5500-m-thick arc deposits, suggesting a deposition rate of ∼220 m Ma–1 in ∼25 m.y. We have also defined four different chemical volcanic episodes: (1) an early-middle Turonian–Santonian mafic-intermediate episode, (2) a Santonian acidic episode; when the main volcanic centers were formed as huge acidic domes-calderas comprising the volcanogenic massive sulfide ores, (3) a late Santonian–late Campanian mafic-intermediate episode, and (4) a late Campanian–early Maastrichtian acidic episode. The volcaniclastic rocks were deposited in a deepwater extensional basin until the late Campanian. Between late Campanian and early Maastrichtian, intra-arc extension resulted in opening of back-arc in the north, while the southern part of the arc remained active and uplifted. The back-arc basin was most probably connected to the Eastern Black Sea Basin. In the back-arc basin, early Maastrichtian volcano-sedimentary arc sequence was transitionally overlain by pelagic sediments until late Danian suggesting continuous deep-marine conditions. However, the subsidence of the uplifted-arc-region did not occur until late Maastrichtian. We have documented a Selandian–early Thanetian (57–60 Ma) regional hiatus defining the closure age of the İzmir-Ankara-Erzincan Ocean along the Eastern Pontides. Between late Thanetian and late Lutetian synorogenic turbidites and postcollisional volcanics were deposited. The Eastern Pontide fold-and-thrust belt started to form at early Eocene (ca. 55 Ma) and thrusting continued in the post-Lutetian times.

1998 ◽  
Vol 135 (1) ◽  
pp. 101-119 ◽  
Author(s):  
IVAN S. ZAGORCHEV

The Paril Formation (South Pirin and Slavyanka Mountains, southwestern Bulgaria) and the Prodromos Formation (Orvilos and Menikion Mountains, northern Greece) consist of breccia and olistostrome built up predominantly of marble fragments from the Precambrian Dobrostan Marble Formation (Bulgaria) and its equivalent Bos-Dag Marble Formation (Greece). The breccia and olistostrome are interbedded with thin layers of calcarenites (with occasional marble pebbles), siltstones, sandstones and limestones. The Paril and Prodromos formations unconformably cover the Precambrian marbles, and are themselves covered unconformably by Miocene and Pliocene sediments (Nevrokop Formation). The rocks of the Paril Formation are intruded by the Palaeogene (Late Eocene–Early Oligocene) Teshovo granitoid pluton, and are deformed and preserved in the two limbs of a Palaeogene anticline cored by the Teshovo pluton (Teshovo anticline). The Palaeocene–Middle Eocene age of the formations is based on these contact relations, and on occasional finds of Tertiary pollen, as well as on correlations with similar formations of the Laki (Kroumovgrad) Group throughout the Rhodope region.The presence of Palaeogene sediments within the pre-Palaeogene Pirin–Pangaion structural zone invalidates the concept of a ‘Rhodope metamorphic core complex’ that supposedly has undergone Palaeogene amphibolite-facies regional metamorphism, and afterwards has been exhumed by rapid crustal extension in Late Oligocene–Miocene times along a regional detachment surface. Other Palaeogene formations of pre-Priabonian (Middle Eocene and/or Bartonian) or earliest Priabonian age occur at the base of the Palaeogene sections in the Mesta graben complex (Dobrinishka Formation) and the Padesh basin (Souhostrel and Komatinitsa formations). The deposition of coarse continental sediments grading into marine formations (Laki or Kroumovgrad Group) in the Rhodope region at the beginning of the Palaeogene Period marks the first intense fragmentation of the mid- to late Cretaceous orogen, in particular, of the thickened body of the Morava-Rhodope structural zone situated to the south of the Srednogorie zone. The Srednogorie zone itself was folded and uplifted in Late Cretaceous time, thus dividing Palaeocene–Middle Eocene flysch of the Louda Kamchiya trough to the north, from the newly formed East Rhodope–West Thrace depression to the south.


2017 ◽  
Vol 54 (2) ◽  
pp. 69-85 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Kacey Garber ◽  
Jarek Trela

The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.


Author(s):  
B. Grasemann ◽  
D.A. Schneider ◽  
K. Soukis ◽  
V. Roche ◽  
B. Hubmann

The paleogeographic position of the central Dodecanese Islands at the transition between the Aegean and Anatolian plates plays a considerable role in understanding the link between both geologically unique domains. In this study, we investigate the tectonic history of the central Dodecanese Islands and the general correlation with the Aegean and western Anatolian and focus on the poorly studied islands of Kalymnos and Telendos. Three different major tectonic units were mapped on both islands from bottom to top: (1) The Kefala Unit consists of late Paleozoic, fossil-rich limestones, which have been deformed into a SE-vergent fold-and-thrust belt sealed by an up to 200-m-thick wildflysch-type olistostrome with marble and ultramafic blocks on a scale of tens of meters. (2) The Marina Basement Unit consists of a Variscan amphibolite facies basement with garnet mica schists, quartzites, and amphibolites. (3) Verrucano-type formation violet shales and Mesozoic unmetamorphosed limestones form the Marina Cover Unit. Correlation of these units with other units in the Aegean suggests that Kalymnos is paleogeographically located at the southern margin of the Pelagonian domain, and therefore it was in a structurally upper tectonic position during the Paleogene Alpine orogeny. New white mica 40Ar/39Ar ages confirm the Carboniferous deformation of the Marina Basement Unit followed by a weak Triassic thermal event. Single-grain white mica 40Ar/39Ar ages from pressure solution cleavage of the newly defined Telendos Thrust suggest that the Marina Basement Unit was thrusted toward the north on top of the Kefala Unit in the Paleocene. Located at a tectonically upper position, the units exposed in the central Dodecanese escaped subduction and the syn-orogenic, high-pressure metamorphism. However, these units were affected by post-orogenic extension, and the contact between the Marina Basement Unit and the non-metamorphic Marina Cover Unit has been reactivated by the cataclastic top-to-SSW, low-angle Kalymnos Detachment. Zircon (U-Th)/He ages from the Kefala and Marina Basement Units are ca. 30 Ma, which indicates that exhumation and cooling below the Kalymnos Detachment started in the Oligocene. Conjugate brittle high-angle normal fault systems, which resulted in the formation of four major WNW-ESE−trending graben systems on Kalymnos, localized mainly in the Marina Cover Unit and probably rooted in the mechanically linked Kalymnos Detachment. Since Oligo-Miocene deformation in the northern Dodecanese records top-to-NNE extension and the Kalymnos Detachment accommodated top-to-SSW extension, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent.


2021 ◽  
Author(s):  
Arran Murch ◽  
Kenichiro Tani ◽  
Takashi Sano ◽  
Shigekazu Yoneda

<p>The Okinawa Trough (OT) is an incipient continental back-arc basin that extends from Kyushu in the north to Taiwan in the south. The Okinawa Trough can be split in to three segments, the Northern (NOT), Middle (MOT), and Southern (SOT) with active back-arc volcanism restricted to volcanic centres located in en-echelon grabens the MOT and SOT. Previous studies have shown magmatism in the OT is bimodal (basaltic to rhyolitic), with at least two types of silicic melts inferred to form through pure fractional crystallisation from basalt and by fractional crystallisation along with minor crustal assimilation (Shinjo and Kato, 2000).</p><p>Here we present petrological descriptions, along with major, trace element and Sr–Nd isotopic data for 75 silicic end member samples recovered as both lava and pumice, collected during the R/V Sonne HYDROMIN1 and 2 cruises in 1988 and 1990, respectively. Samples were dredged from various seafloor knolls and ridges located in the Io and Iheya grabens and from Izena Hole in the MOT, and from a single volcanic ridge in the Yaeyama graben and a single isolated knoll in the SOT.</p><p>Results show a chemically highly diverse silicic end member magmas, with at least four identifiable groups based on differences in the degree of enrichment of incompatible elements (LREE, K, Rb, Ba, etc.). Each group contains at least one dense lava sample suggesting the chemical diversity is a primary feature of magmatism in the Okinawa Trough rather than a result of the floating in of pumiceous material from various locations.</p><p>Using petrological descriptions and the chemistry of samples along with MELTS modelling we plan to calculate magma formation conditions and identify any evidence of magma mixing or crustal assimilation. In doing so we hope to provide a model to explain the diversity of silicic magma chemistry in the MOT and SOT.</p><p> </p><p>Shinjo, R., and Kato, Y. (2000). Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos 54, 117–137. doi:10.1016/S0024-4937(00)00034-7.</p>


GeoArabia ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. 387-402 ◽  
Author(s):  
M. Atef Noweir ◽  
Abdulrahman S. Alsharhan

ABSTRACT Detailed field mapping and structural studies in the Jebel Auha-Jebel Huwayyah area northeast of Al-Ain indicate that folding of neoautochthonous sedimentary rocks produced the north-northwest-trending Huwayyah Anticline. The anticline at the surface is composed of the Maastrichtian Qahlah and Simsima formations unconformably overlain by shallow-marine carbonate rocks that are correlated on faunal grounds with the Middle Eocene Dammam Formation. The investigation of the Huwayyah Anticline has identified three microfacies of bioclastic packstone, nummulitic packstone, and nummulitic packstone-grainstone in the local Dammam Formation. Diagenesis in the form of silicification, cementation, recrystallization, dissolution, compaction and neomorphism is widespread. The Huwayyah Anticline is a fault-propagation fold above a thrust ramp. The ramp developed from a pre-existing Late Cretaceous basal thrust within the Semail Ophiolite on the Oman Mountain Front. The anticline was formed as a result of regional compressive deformation due to rejuvenation of the Late Cretaceous thrust in post-Middle Eocene times. Westward-directed high-angle reverse faults of Jebel Auha trend parallel to the fold axis of the anticline. The Auha faults probably originated as west-dipping thrusts on the western flank of the anticline and were subsequently rotated to their present attitude as the flank of the anticline became steeper due to compression from the east.


2002 ◽  
Vol 173 (5) ◽  
pp. 449-459 ◽  
Author(s):  
Manuel Gómez ◽  
Jaume Vergés ◽  
Carlos Riaza

Abstract The northern margin of the Basque-Cantabrian Basin was analysed combining stratigraphic and structural data from both surface and subsurface together with reflectance of vitrinite data from oil wells. The use of cross-section balancing techniques in addition to thermal modelling enabled us to reconstruct the tectonic, burial and thermal evolutions of the basin margin as well as those of the Landes High to the N in two different periods. The section restoration at the end of the Cretaceous shows a northern basin margin structure influenced by evaporites related to south-dipping normal faults. The reconstruction in middle Eocene times yielded up to 1 800 m of Paleocene-middle Eocene deposits on top of the basin margin. Subsequent tectonic inversion related to the Pyrenean compression led to the north-directed thrusting of basement units and to the formation of thrust slices or inverted folds in the cover along the northern margin of the basin. Tectonic subsidence analysis together with maturity data provided evidence that oil was generated in the basin during the late syn-rift and post-rift stages in the Late Cretaceous and became overmature during the period of incipient inversion after 55 Ma. In the autochthonous Landes High, the oil was generated after the tectonic inversion period 37 Ma.


2019 ◽  
Vol 132 (5-6) ◽  
pp. 1083-1105 ◽  
Author(s):  
Hadi Shafaii Moghadam ◽  
R.J. Stern ◽  
W.L. Griffin ◽  
M.Z. Khedr ◽  
M. Kirchenbaur ◽  
...  

Abstract How new subduction zones form is an ongoing scientific question with key implications for our understanding of how this process influences the behavior of the overriding plate. Here we focus on the effects of a Late Cretaceous subduction-initiation (SI) event in Iran and show how SI caused enough extension to open a back-arc basin in NE Iran. The Late Cretaceous Torbat-e-Heydarieh ophiolite (THO) is well exposed as part of the Sabzevar-Torbat-e-Heydarieh ophiolite belt. It is dominated by mantle peridotite, with a thin crustal sequence. The THO mantle sequence consists of harzburgite, clinopyroxene-harzburgite, plagioclase lherzolite, impregnated lherzolite, and dunite. Spinel in THO mantle peridotites show variable Cr# (10–63), similar to both abyssal and fore-arc peridotites. The igneous rocks (gabbros and dikes intruding mantle peridotite, pillowed and massive lavas, amphibole gabbros, plagiogranites and associated diorites, and diabase dikes) display rare earth element patterns similar to MORB, arc tholeiite and back-arc basin basalt. Zircons from six samples, including plagiogranites and dikes within mantle peridotite, yield U-Pb ages of ca. 99–92 Ma, indicating that the THO formed during the Late Cretaceous and was magmatically active for ∼7 m.y. THO igneous rocks have variable εNd(t) of +5.7 to +8.2 and εHf(t) ranging from +14.9 to +21.5; zircons have εHf(t) of +8.1 to +18.5. These isotopic compositions indicate that the THO rocks were derived from an isotopically depleted mantle source similar to that of the Indian Ocean, which was slightly affected by the recycling of subducted sediments. We conclude that the THO and other Sabzevar-Torbat-e-Heydarieh ophiolites formed in a back-arc basin well to the north of the Late Cretaceous fore-arc, now represented by the Zagros ophiolites, testifying that a broad region of Iran was affected by upper-plate extension accompanying Late Cretaceous subduction initiation.


2002 ◽  
Vol 34 (6) ◽  
pp. 2099 ◽  
Author(s):  
J. L. MERCIER ◽  
P. VERGELY

In the Axios-Vardar zone, the Paikon massif has been revisited. To the west, it is composed of a pile-up of SW dipping slices. These have been thrust toward the NNE while the Almopias zone was folding with a SSW vergence. Subsequently thrusting with a SW vergence occurred on the eastern flank of the Paikon massif and in the Almopias zone. These tectonic events took place during the Paleocene - early Eocene and during the upper Eocene - lower Oligocene respectively. During the late Cretaceous, the Almopias zone was a trough whose floor was a late Jurassic ophiolitic sheet. It was located between the Paikon carbonate platform and the Pelagonian platform. This analysis leads to the conclusion that the ophiolites were already located in the Almopias zone before the late Cretaceous and even before the upper Jurassic-lower Cretaceous. It is concluded that during the Jurassic the Almopias zone was an oceanic crust basin, the Paikon zone an island arc and the Peonias zone a back-arc basin. This analysis is a first step which is necessary to precise the geodynamic significance of the Axios- Vardar zone as a whole during the Triassic - Jurassic taking into account the stratigraphie, paleogeographic and structural data and the location in space and time of the magmatic and metamorphic belts


2020 ◽  
Author(s):  
Charlotte Peigney ◽  
Elisabet Beamud ◽  
Óscar Gratacós ◽  
Luis Valero ◽  
Ruth Soto ◽  
...  

<p>The South-Pyrenean fold-and-thrust belt consists of three major thin-skinned thrust sheets (Bóixols, Montsec and Serres Marginals) made up of uppermost Triassic to Oligocene cover rocks emplaced during Late Cretaceous-Oligocene times. In its central part, it forms a major salient (the Pyrenean South-Central Unit) whose geometry is controlled by the areal distribution of the pre-orogenic Upper Triassic and synorogenic Eocene salt décollement layers. Both westwards and eastwards, the salient is fringed by Paleogene synorogenic deposits that are deformed by detachment folds with orientations ranging from N-S to E-W. In the western edge of the salient, the varying trend of the folds is a result of synorogenic vertical axis rotations (VAR) which caused the clockwise rotation of the folds from an initial predominant E-W trend to the current NW-SE to NNW-SSE trend. The salient, at least on its western part, developed from a progressive curve originated from divergent thrust transport directions and distributed shortening.</p><p>The aim of our study is to get a better understanding of the whole salient, by studying the kinematics of the deformation on the most frontal part of its eastern edge. Here, some sparse anticlockwise rotations have been reported but their origin and their possible relationship with the distribution of the salt décollements has not yet been addressed. For this purpose, 78 paleomagnetic sites have been sampled on the synorogenic upper Eocene-Oligocene materials of the NE Ebro foreland Basin, in the Artesa de Segre area, focusing on the limbs of oblique salt-cored anticlines (Ponts, Vilanova de l’Aguda, Cardona) which are detached above the synorogenic Eocene-Oligocene evaporites of the Cardona and the Barbastro formations. VAR analyses principally show anticlockwise rotations similar to those previously identified to the North in the Oliana Anticline, although a small number of clockwise rotations were also detected.</p><p>In addition to the VAR analysis, a magnetostratigraphic study of the Eocene-Oligocene continental materials of the northern limb of the Sanaüja Anticline has been conducted in order to constrain the age of these rotations from stratigraphic correlations. The demagnetization of 104 samples from a ca. 1100 m thick magnetostratigraphic section shows Priabonian to Rupelian ages for this succession. The integration of our results on timing, direction and magnitude of foreland VAR with previous paleomagnetic and structural data from both the western and eastern boundaries of the frontal thrust of the Pyrenean South-Central Unit will allow the understanding of the kinematics of the thrust salient as a whole.</p>


2020 ◽  
Vol 29 (7) ◽  
pp. 1125-1153
Author(s):  
Mustafa Kemal REVAN

The production of Cu-Zn from volcanogenic massive sulfide (VMS) deposits in the eastern Pontides began in the early 1900s, with the exploitation of high-grade ores scattered across the district. The district still possesses economically important blind VMS and associated sulfide deposits. Careful descriptive documentation of the typical features of these VMS ores illustrated the geological characteristics that are important in identifying ore localities and can be used to define exploration targets. The eastern Pontide VMS deposits are examples of volcanic-hosted massive sulfide deposits that exhibit many of the characteristics typical of bimodal-felsic- type VMS mineralization. Nearly all known VMS deposits in the region are hosted by the Kızılkaya Formation, which is characterized by Late Cretaceous dacitic/rhyolitic volcanic rocks that are typically located at the top contact of the dacitic/rhyolitic pile or within the lower part of the overlying polymodal sequence containing various proportions of volcanic and sedimentary facies. Most VMS deposits are composed of a mound of high-grade massive sulfides formed above a zone of lower-grade stringer veins and disseminated mineralization. The dominant sulfide minerals in most deposits are pyrite, chalcopyrite, and sphalerite. Au also occurs in some deposits. The hydrothermal ore facies are diagnostic of subaqueous emplacement of the Pontide massive sulfide deposits that were deposited on the Cretaceous ocean floor. The immediate host lithologies associated with VMS mineralization have typically experienced intense and widespread alteration. The trace element geochemical signatures of the host rocks indicated that the Pontide VMS deposits likely formed in an extensional tectonic regime during subduction. Major lineaments and circular structures exerted fundamental controls on the locations of the VMS deposits in the eastern Pontide district. Age determinations indicated that almost all of the deposits in this region formed in a restricted time interval between ca. 91.1 and 82 Ma. The sulfur isotope compositions of the ore-forming fluids were consistent with those of fluids derived from modified seawater.


Sign in / Sign up

Export Citation Format

Share Document