scholarly journals Locus control regions

Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3077-3086 ◽  
Author(s):  
Qiliang Li ◽  
Kenneth R. Peterson ◽  
Xiangdong Fang ◽  
George Stamatoyannopoulos

Abstract Locus control regions (LCRs) are operationally defined by their ability to enhance the expression of linked genes to physiological levels in a tissue-specific and copy number–dependent manner at ectopic chromatin sites. Although their composition and locations relative to their cognate genes are different, LCRs have been described in a broad spectrum of mammalian gene systems, suggesting that they play an important role in the control of eukaryotic gene expression. The discovery of the LCR in the β-globin locus and the characterization of LCRs in other loci reinforces the concept that developmental and cell lineage–specific regulation of gene expression relies not on gene-proximal elements such as promoters, enhancers, and silencers exclusively, but also on long-range interactions of variouscis regulatory elements and dynamic chromatin alterations.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Temitayo O. Idowu ◽  
Valerie Etzrodt ◽  
Thorben Pape ◽  
Joerg Heineke ◽  
Klaus Stahl ◽  
...  

Abstract Background Reduced endothelial Tie2 expression occurs in diverse experimental models of critical illness, and experimental Tie2 suppression is sufficient to increase spontaneous vascular permeability. Looking for a common denominator among different critical illnesses that could drive the same Tie2 suppressive (thereby leak inducing) phenotype, we identified “circulatory shock” as a shared feature and postulated a flow-dependency of Tie2 gene expression in a GATA3 dependent manner. Here, we analyzed if this mechanism of flow-regulation of gene expression exists in vivo in the absence of inflammation. Results To experimentally mimic a shock-like situation, we developed a murine model of clonidine-induced hypotension by targeting a reduced mean arterial pressure (MAP) of approximately 50% over 4 h. We found that hypotension-induced reduction of flow in the absence of confounding disease factors (i.e., inflammation, injury, among others) is sufficient to suppress GATA3 and Tie2 transcription. Conditional endothelial-specific GATA3 knockdown (B6-Gata3tm1-Jfz VE-Cadherin(PAC)-cerERT2) led to baseline Tie2 suppression inducing spontaneous vascular leak. On the contrary, the transient overexpression of GATA3 in the pulmonary endothelium (jet-PEI plasmid delivery platform) was sufficient to increase Tie2 at baseline and completely block its hypotension-induced acute drop. On the functional level, the Tie2 protection by GATA3 overexpression abrogated the development of pulmonary capillary leakage. Conclusions The data suggest that the GATA3–Tie2 signaling pathway might play a pivotal role in controlling vascular barrier function and that it is affected in diverse critical illnesses with shock as a consequence of a flow-regulated gene response. Targeting this novel mechanism might offer therapeutic opportunities to treat vascular leakage of diverse etiologies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yavor K. Bozhilov ◽  
Damien J. Downes ◽  
Jelena Telenius ◽  
A. Marieke Oudelaar ◽  
Emmanuel N. Olivier ◽  
...  

AbstractMany single nucleotide variants (SNVs) associated with human traits and genetic diseases are thought to alter the activity of existing regulatory elements. Some SNVs may also create entirely new regulatory elements which change gene expression, but the mechanism by which they do so is largely unknown. Here we show that a single base change in an otherwise unremarkable region of the human α-globin cluster creates an entirely new promoter and an associated unidirectional transcript. This SNV downregulates α-globin expression causing α-thalassaemia. Of note, the new promoter lying between the α-globin genes and their associated super-enhancer disrupts their interaction in an orientation-dependent manner. Together these observations show how both the order and orientation of the fundamental elements of the genome determine patterns of gene expression and support the concept that active genes may act to disrupt enhancer-promoter interactions in mammals as in Drosophila. Finally, these findings should prompt others to fully evaluate SNVs lying outside of known regulatory elements as causing changes in gene expression by creating new regulatory elements.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Puli Chandramouli Reddy ◽  
Akhila Gungi ◽  
Suyog Ubhe ◽  
Sanjeev Galande

Abstract Background Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. Results To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. Conclusions The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 523-523
Author(s):  
Marco De Gobbi ◽  
Vip Viprakasit ◽  
Pieter J. de Jong ◽  
Yuko Yoshinaga ◽  
Jan-Fang Cheng ◽  
...  

Abstract The human α globin cluster includes an embryonic gene ζ and 2 fetal/adult genes (α2 and α1) arranged along the chromosome in the order in which they are expressed in development (5′-ζ-pseudoζ- αD- α2-α1-𝛉-3′). Fully activated expression of these genes in erythroid cells depends on upstream regulatory elements of which HS-40, located 40kb upstream of the cluster, appears to exert the greatest effect. We have recently shown that during terminal differentiation, key transcription factors (GATA-2, GATA-1, NF-E2, SCL complex) sequentially bind the α promoters and their regulatory elements and a domain of histone acetylation develops which eventually encompasses the entire α globin cluster including the upstream regulatory sequences. α-thalassemia most frequently results from deletions or point mutations affecting the structural α globin genes, but may also result from rare sporadic deletions which remove the upstream regulatory sequences. In a single family α globin expression was silenced by a mutation which drives an anti-sense RNA through the α gene. Alpha thalassemia may also result from inherited and acquired mutations in a trans-acting factor called ATRX. Over the past few years we have continued to screen for new mechanisms which lead to α thalassemia and thereby elucidate new principles underlying the regulation of gene expression in hemopoiesis. Here we describe a new mechanism of α thalassemia occurring in Pacific Islanders in whom we could detect no mutations or rearrangements in the α globin gene locus. Despite this, extensive genetic analysis showed unequivocally that the causative mutation is linked to the terminal 169kb of chromosome 16 (Viprakasit et al accompanying abstract). Analysis of globin synthesis, steady state RNA levels and detection of RNA in situ demonstrated that the mutation downregulates α globin transcription. To identify the mutation, we constructed a new BAC library from an affected homozygote, isolated and re-sequenced the candidate region and focussed further analysis on 8 SNPS within the α globin cluster, one of which creates a new GATA-1 binding site (GACA>GATA). Using primary erythroblasts from normal individuals and patients with this form of thalassemia, together with interspecific hybrids containing either the normal or abnormal copy of chromosome 16, we have shown that this SNP creates a new binding site in vivo for GATA-1 and the SCL complex. Furthermore, the chromatin at this site becomes activated as judged by acetylation of histone H3 and H4 (H3ac2 and H4ac4) and methylation of histone H3 (H3K4me2). Based on these data we postulate that an active transcriptional complex binding this new GATA site created by the SNP-mutation, could distract the upstream regulatory regions, which normally interact with the α globin promoter, and silence α globin gene expression. This model thus represents a new example of α globin gene down-regulation and a new mechanism by which gene expression can be perturbed during hemopoiesis.


2000 ◽  
Vol 167 (1) ◽  
pp. R1-R5 ◽  
Author(s):  
M Imae ◽  
Y Inoue ◽  
Z Fu ◽  
H Kato ◽  
T Noguchi

Hepatocyte nuclear factor-3 (HNF-3) belongs to a large family of forkhead transcription factors and is made up of three members (HNF-3alpha, -3beta and -3gamma). It has been shown that HNF-3 regulates a number of metabolically important genes. However, the mechanisms underlying this regulation of HNF-3 activity by hormones and nutrition have not yet been well elucidated. In attempting to explore the regulation of gene expression of HNF-3 members by physiological status, we analyzed the effects of insulin, dexamethasone and protein malnutrition on the hepatic mRNA level of each member. Male Wistar rats were fed on a 12% casein diet, 12% gluten diet (deficient in lysine and threonine) or a protein-free diet for 1 week. The protein-free diet and gluten diet caused a 3. 7-fold increase in HNF-3g mRNA in the liver and did not affect the mRNA level of either HNF-3alpha or HNF-3beta. Daily administration of dexamethasone caused the mRNA levels of HNF-3alpha and HNF-3beta to increase (2.3- and 1.4-fold, respectively), but had no effect on the HNF-3gamma mRNA level. In diabetic rats that had been injected with streptozotocin, an elevation of the hepatic mRNA levels of HNF-3beta and HNF-3gamma was observed (1.6-and 1.9-fold, respectively). Insulin replacement in the diabetic rats decreased both mRNA levels in a dose-dependent manner. HNF-3alpha mRNA was not affected by insulin status. These results show that the genes of the three members of the HNF-3 family respond differently to hormonal and nutritional factors suggesting that the activities of HNF-3 members are regulated, at least in part, by the levels of their gene expression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marios Agelopoulos ◽  
Spyros Foutadakis ◽  
Dimitris Thanos

Regulation of gene expression in time, space and quantity is orchestrated by the functional interplay of cis-acting elements and trans-acting factors. Our current view postulates that transcription factors recognize enhancer DNA and read the transcriptional regulatory code by cooperative DNA binding to specific DNA motifs, thus instructing the recruitment of transcriptional regulatory complexes forming a plethora of higher-ordered multi-protein-DNA and protein-protein complexes. Here, we reviewed the formation of multi-dimensional chromatin assemblies implicated in gene expression with emphasis on the regulatory role of enhancer hubs as coordinators of stochastic gene expression. Enhancer hubs contain many interacting regulatory elements and represent a remarkably dynamic and heterogeneous network of multivalent interactions. A functional consequence of such complex interaction networks could be that individual enhancers function synergistically to ensure coordination, tight control and robustness in regulation of expression of spatially connected genes. In this review, we discuss fundamental paradigms of such inter- and intra- chromosomal associations both in the context of immune-related genes and beyond.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Anna Díez-Villanueva ◽  
Mireia Jordà ◽  
Robert Carreras-Torres ◽  
Henar Alonso ◽  
David Cordero ◽  
...  

Abstract Background DNA methylation is involved in the regulation of gene expression and phenotypic variation, but the inter-relationship between genetic variation, DNA methylation and gene expression remains poorly understood. Here we combine the analysis of genetic variants related to methylation markers (methylation quantitative trait loci: mQTLs) and gene expression (expression quantitative trait loci: eQTLs) with methylation markers related to gene expression (expression quantitative trait methylation: eQTMs), to provide novel insights into the genetic/epigenetic architecture of colocalizing molecular markers. Results Normal mucosa from 100 patients with colon cancer and 50 healthy donors included in the Colonomics project have been analyzed. Linear models have been used to find mQTLs and eQTMs within 1 Mb of the target gene. From 32,446 eQTLs previously detected, we found a total of 6850 SNPs, 114 CpGs and 52 genes interrelated, generating 13,987 significant combinations of co-occurring associations (meQTLs) after Bonferromi correction. Non-redundant meQTLs were 54, enriched in genes involved in metabolism of glucose and xenobiotics and immune system. SNPs in meQTLs were enriched in regulatory elements (enhancers and promoters) compared to random SNPs within 1 Mb of genes. Three colorectal cancer GWAS SNPs were related to methylation changes, and four SNPs were related to chemerin levels. Bayesian networks have been used to identify putative causal relationships among associated SNPs, CpG and gene expression triads. We identified that most of these combinations showed the canonical pathway of methylation markers causes gene expression variation (60.1%) or non-causal relationship between methylation and gene expression (33.9%); however, in up to 6% of these combinations, gene expression was causing variation in methylation markers. Conclusions In this study we provided a characterization of the regulation between genetic variants and inter-dependent methylation markers and gene expression in a set of 150 healthy colon tissue samples. This is an important finding for the understanding of molecular susceptibility on colon-related complex diseases.


2014 ◽  
Author(s):  
Aleksandra Pekowska ◽  
Bernd Klaus ◽  
Felix Alexander Klein ◽  
Simon Anders ◽  
Malgorzata Oles ◽  
...  

Regulation of gene expression underlies cell identity. Chromatin structure and gene activity are linked at multiple levels, via positioning of genomic loci to transcriptionally permissive or repressive environments and by connecting cis-regulatory elements such as promoters and enhancers. However, the genome-wide dynamics of these processes during cell differentiation has not been characterized. Using tethered chromatin conformation capture (TCC) sequencing we determined global three-dimensional chromatin structures in mouse embryonic stem (ES) and neural stem (NS) cell derivatives. We found that changes in the propensity of genomic regions to form inter-chromosomal contacts are pervasive in neural induction and are associated with the regulation of gene expression. Moreover, we found a pronounced contribution of euchromatic domains to the intra-chromosomal interaction network of pluripotent cells, indicating the existence of an ES cell-specific mode of chromatin organization. Mapping of promoter-enhancer interactions in pluripotent and differentiated cells revealed that spatial proximity without enhancer element activity is a common architectural feature in cells undergoing early developmental changes. Activity-independent formation of higher-order contacts between cis-regulatory elements, predominant at complex loci, may thus provide an additional layer of transcriptional control.


2017 ◽  
Author(s):  
Christian Oertlin ◽  
Julie Lorent ◽  
Valentina Gandin ◽  
Carl Murie ◽  
Laia Masvidal ◽  
...  

ABSTRACTmRNA translation plays an evolutionarily conserved role in homeostasis and when dysregulated results in various disorders. Optimal and universally applicable analytical methods to study transcriptome-wide changes in translational efficiency are therefore critical for understanding the complex role of translation regulation under physiological and pathological conditions. Techniques used to interrogate translatomes, including polysome- and ribosome-profiling, require adjustment for changes in total mRNA levels to capture bona fide alterations in translational efficiency. Herein, we present the anota2seq algorithm for such analysis using data from ribosome- or polysome-profiling quantified by DNA-microarrays or RNA sequencing, which outperforms current methods for identification of changes in translational efficiency. In contrast to available analytical methods, anota2seq also allows capture of an underappreciated mode for regulation of gene expression whereby translation acts as a buffering mechanism which maintains constant protein levels despite fluctuations in mRNA levels (“translational buffering”). Application of anota2seq shows that insulin affects gene expression at multiple levels, in a largely mTOR-dependent manner. Moreover, insulin induces levels of a subset of mRNAs independently of mTOR that undergo translational buffering upon mTOR inhibition. Thus, the universal anota2seq algorithm allows efficient and hitherto unprecedented interrogation of translatomes and enables studies of translational buffering which represents an unexplored mechanism for regulating of gene expression.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009801
Author(s):  
Karl M. Glastad ◽  
Linyang Ju ◽  
Shelley L. Berger

A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.


Sign in / Sign up

Export Citation Format

Share Document