The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA–positive chronic eosinophilic leukemia

Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2802-2805 ◽  
Author(s):  
Jan Cools ◽  
Hilmar Quentmeier ◽  
Brian J. P. Huntly ◽  
Peter Marynen ◽  
James D. Griffin ◽  
...  

Abstract We recently identified the chimeric kinase FIP1L1-platelet-derived growth factor receptor α (PDGFRα) as a cause of the hypereosinophilic syndrome and of chronic eosinophilic leukemia. To investigate the role of FIP1L1-PDGFRA in the pathogenesis of acute leukemia, we screened 87 leukemia cell lines for the presence of FIP1L1-PDGFRA. One cell line, EOL-1, expressed the FIP1L1-PDGFRA fusion. Three structurally divergent kinase inhibitors—imatinib (STI-571), PKC412, and SU5614—inhibited the growth of EOL-1 cells. These results indicate that the fusion of FIP1L1 to PDGFRA occurs rarely in leukemia cell lines, but they identify EOL-1 as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia and for the analysis of small molecule inhibitors of FIP1L1-PDGFRα. (Blood. 2004;103:2802-2805)

1996 ◽  
Vol 24 (4) ◽  
pp. 581-587
Author(s):  
Cristiana Zanetti ◽  
Arrnalaura Stammati ◽  
Orazio Sapora ◽  
Flavia Zucco

The aim of this study was to investigate the endpoints related to cell death, either necrosis or apoptosis, induced by four chemicals in the promyelocytic leukemia cell line, HL-60. Cell morphology, DNA fragmentation, cytofluorimetric analysis and oxygen consumption were used to classify the type of cell death observed. In our analysis, we found that not all the selected parameters reproduced the differences observed in the cell death caused by the four chemicals tested. As cell death is a very complex phenomenon, several factors should be taken into account (cell type, exposure time and chemical concentration), if chemicals are to be classified according to differences in the mechanisms more directly involved in cell death.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4244-4244
Author(s):  
Tsuyoshi Nakamaki ◽  
Norimichi Hattori ◽  
Hidetoshi Nakashima ◽  
Takashi Maeda ◽  
Hirotsugu Ariizumi ◽  
...  

Abstract Pervious in vitro studies have shown that molecular alterations of BCR-ABL-positive leukemia cells such as amplification of BCR-ABL gene and/or mutation(s) of abl kinase domain cause resistant to imatinib. However recent study showed that alterations of imatinib bioavailability might be a important factor to cause clinical resistant in BCR-ABL-positive leukemia patients, showing a differences between in vivo and in vitro sensitivity to imatinib of BCR-ABL-positive cells. To analyze mechanism(s) of clinical resistance to imatinib and to overcome the resistance, we have sequentially established and characterized two leukemia cell lines from a patient with myeloid blastic crisis of chronic myeloid leukemia (CML) who showed progressively resistant to imatinib. Case report and establishment of cell lines: a 59-years-old women developed blastic crisis preceded by four years of chronic phase of CML. Increased blasts in crisis was positive for CD13, 33 and showed double Ph-chromosome in addition to complexed chromosomal alterations such as, add(3)(p13), add(3)(q11), add(5)(q11), der(19)(3;19) (p21;q13). After repeated courses of combination chemotherapy including, 600mg of imatinib was administered orally in combination with chemotherapeutic drugs. For a brief period Imatinib showed clinical effects and slowed the increase of BCR-ABL-positive cells, however myeloblast progressively increased in peripheral blood in spite of daily administration of imatinib and she died four months treatment with imatinib. Two myeloid leukemia cell lines, NS-1 and NS-2 were established, after obtaining informed consent, from peripheral blood at day 65 and day 95 after initiation of imatinib administration, respectively. Cell surface phenotype and karyotype of these cell lines were identical to original blasts. NS-1 and NS-2 cell lines were characterized compared with BCR/ABL-positive K562 erythroleukemia cell line as a control Quantitative analysis by real-time polymerase chain reaction showed that copy number of BCR-ABL transcript were 2.2 × 105 and 1.6 × 10 5/μg RNA in NS-1 and NS-2 respectively, showing slightly lower than those (5.8 × 105) in K562 cell line. Although nucleotide sequence analysis showed that a point mutation in abl kinase domain resulted in amino acid substitution pro310ser in NS-1 cell line, no additional mutation was found in NS-2 cell line. Western blot analysis showed levels of both 210 KD BCR-ABL protein and BCR-ABL phosphorylation were similar in NS-1, NS-2 and K562 cells. Although two hours incubation with 10 mM imatinibin vitro did not show any detectable difference in levels of phosphorylation of BCR-ABL protein between NS-1 and NS-2 cell lines, sensitivity to imatinib measured by MTT assay showed that IC50 was 0.1 mM, 0.5 mM and 1.0mMin NS-1, NS-2 and K562 cell lines respectively. The measured IC50 of both NH-1 and NH-2 cell lines were much lower than reported plasma concentrations achieved by oral administration of 600 mg of imatinib (above 10 μM). The present results suggest difference between in vivo and in vitro sensitivity to imatinib indicate that alteration of bioavailability of imatinib possibly involved in clinical resistance to this drug, accumulations of BCR-ABL gene amplification and/or mutation are not necessarily a major reason of progressive clinical resistance to imatinib in BCR-ABL positive leukemia.


2015 ◽  
Vol 11 (9) ◽  
pp. 2406-2416 ◽  
Author(s):  
Suganthagunthalam Dhakshinamoorthy ◽  
Nha-Truc Dinh ◽  
Jeffrey Skolnick ◽  
Mark P. Styczynski

We characterize the anti-proliferative activity of menaquinone in a leukemia cell line and use metabolomics to link it to phosphoethanolamine.


Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4202-4204 ◽  
Author(s):  
Ting-Lei Gu ◽  
Valerie L. Goss ◽  
Cynthia Reeves ◽  
Lana Popova ◽  
Julie Nardone ◽  
...  

Abstract The 8p11 myeloproliferative syndrome (EMS) is associated with translocations that disrupt the FGFR1 gene. To date, 8 fusion partners of FGFR1 have been identified. However, no primary leukemia cell lines were identified that contain any of these fusions. Here, we screened more than 40 acute myeloid leukemia cell lines for constitutive phosphorylation of STAT5 and applied an immunoaffinity profiling strategy to identify tyrosine-phosphorylated proteins in the KG-1 cell line. Mass spectrometry analysis of KG-1 cells revealed aberrant tyrosine phosphorylation of FGFR1. Subsequent analysis led to the identification of a fusion of the FGFR1OP2 gene to the FGFR1 gene. Small interfering RNA (siRNA) against FGFR1 specifically inhibited the growth and induced apoptosis of KG-1 cells. Thus, the KG-1 cell line provides an in vitro model for the study of FGFR1 fusions associated with leukemia and for the analysis of small molecule inhibitors against FGFR1 fusions.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4505-4505
Author(s):  
Thomas Lewis ◽  
Elisabeth Jane Walsby ◽  
Stephen Man ◽  
Christopher Fegan ◽  
Chris Pepper

Abstract Multiple myeloma is an incurable malignancy of terminally differentiated B-cells - also known as plasma cells. These malignant cells are extremely reliant on the bone marrow microenvironment for their growth and survival, as well as their acquired ability to resist therapeutic intervention. Consequently, maintaining primary myeloma cells in vitro remains a challenge. Patients suffering from this incurable disease often develop osteolytic lesions, due to an imbalance between osteoblasts and osteoclasts, which cause bone pain and a high frequency of fractures. This project aims to create a physiologically relevant in vitro model of myeloma that incorporates an osteoclast microenvironment. Osteoclasts normally work in concert with osteoblasts during bone tissue remodelling. In myeloma their activity predominates and is intrinsic to disease progression. It is now clear that osteoclasts also contribute to the survival of myeloma cells but the precise mechanism(s) for this remain unresolved. As a first step, we developed a model that can support and measure osteoclast function. We showed that the osteosarcoma cell line SAOS-2 was able to secrete a calcified matrix in a fashion similar to human osteoblasts. This was deposited on the plastic substrate following treatment with 300mM ascorbic acid and 10mM ß-glycerol phosphate for 28 days. Subsequently, the cells were removed from the mineralized plates and they were used to provide a base material to measure the resorption capacity of osteoclast-like cells and investigate how myeloma cells influence that activity. We next went on to develop and characterise an in vitro osteoclastic model using the myelo-monocytic U937 cell line. Treatment with 100nM PMA and 10nM calcitriol causes these cells to merge and form multi-nucleated (Figure 1A), TRAP positive (Figure 1B) and RANK positive cells. Culturing two different myeloma cell lines, H929 and RPMI-8226, in co-culture with the osteoclast-like cells for a period of 48 hours revealed two unique sub-populations of CD138bright and CD138dim myeloma cells. Phenotypic analysis of these distinct populations showed that they expressed similar levels of CD38 but the CD138dim cells showed a significant upregulation of CD69 (p≤0.05) in both cell lines as a result of co-culture with differentiated U937 osteoclast-like cells. This data indicates that osteoclast-like U937 cells can activate a subset of myeloma cells and may provide a means of sustaining primary myeloma cells in vitro. We are currently performing RNA-seq experiments to try to understand why only a subset of cells respond to this stimulus. We will then go on to establish whether primary myeloma cells derived from patients show similar responses when co-cultured under the same conditions. Figure 1: U937 cells have the capacity to form large multinucleated osteoclast-like cells that express tartrate resistant alkaline phosphatase (TRAP). A. Representative brightfield images coupled with images of DAPI staining following treatment with PMA and calcitriol reveals that U937 cells can become adherent and merge with one another to form large, multinucleated cells. B. Representative images of TRAP (purple) staining illustrate that these osteoclast-like U937 cells are also able to express TRAP following treatment. Disclosures Fegan: Acerta Pharma: Research Funding. Pepper:Cardiff University: Patents & Royalties: Telomere measurement patents.


2016 ◽  
Vol 32 (1) ◽  
pp. 37-59 ◽  
Author(s):  
Yu Wu ◽  
Xing-chao Geng ◽  
Ju-feng Wang ◽  
Yu-fa Miao ◽  
Yan-li Lu ◽  
...  

2021 ◽  
Author(s):  
Darrell R. Kapczynski ◽  
Ryan Sweeney ◽  
David L. Suarez ◽  
Erica Spackman ◽  
Mary Pantin-Jackwood

ABSTRACTThe SARS-CoV-2 (SC2) virus has caused a worldwide pandemic because of the virus’s ability to transmit efficiently human-to-human. A key determinant of infection is the attachment of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Because of the presumed zoonotic origin of SC2, there is no practical way to assess every species susceptibility to SC2 by direct challenge studies. In an effort to have a better predictive model of animal host susceptibility to SC2, we expressed the ACE2 and/or transmembrane serine protease 2 (TMPRSS2) genes from humans and other animal species in the avian fibroblast cell line, DF1, that is not permissive to infection. We demonstrated that expression of both human ACE2 and TMPRSS2 genes is necessary to support SC2 infection and replication in DF1 and a non-permissive sub-lineage of MDCK cells. Titers of SC2 in these cell lines were comparable to those observed in control Vero cells. To further test the model, we developed seven additional transgenic cell lines expressing the ACE2 and TMPRSS2 derived from Felis (cat), Equus (horse), Sus (pig), Capra (goat), Mesocricetus (Golden hamster), Myotis lucifugus (Little Brown bat) and Hipposideros armiger (Great Roundleaf bat) in DF1 cells. Results demonstrate permissive replication of SC2 in cat, Golden hamster, and goat species, but not pig or horse, which correlated with the results of reported challenge studies. The development of this cell culture model allows for more efficient testing of the potential susceptibility of many different animal species for SC2 and emerging variant viruses.IMPORTANCESARS-CoV-2 (SC2) is believed to have originated in animal species and jumped into humans where it has produced the greatest viral pandemic of our time. Identification of animal species susceptible to SC2 infection would provide information on potential zoonotic reservoirs, and transmission potential at the human-animal interface. Our work provides a model system to test the ability of the virus to replicate in an otherwise non-permissive cell line by transgenic insertion of the ACE2 and TMPRSS2 genes from human and other animal species. The results from our in vitro model positively correlate with animal infection studies enhancing the predicative capability of the model. Importantly, we demonstrate that both proteins are required for successful virus replication. These findings establish a framework to test other animal species for susceptibility to infection that may be critical zoonotic reservoirs for transmission, as well as to test variant viruses that arise over time.


1994 ◽  
Vol 14 (11) ◽  
pp. 7604-7610
Author(s):  
H M Pomykala ◽  
S K Bohlander ◽  
P L Broeker ◽  
O I Olopade ◽  
M O Díaz

Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.


1995 ◽  
Vol 19 (10) ◽  
pp. 681-691 ◽  
Author(s):  
H.G. Drexler ◽  
H. Quentmeier ◽  
R.A.F. MacLeod ◽  
C.C. Uphoff ◽  
Z.-B. Hu

Sign in / Sign up

Export Citation Format

Share Document