scholarly journals Recombinant prolylcarboxypeptidase activates plasma prekallikrein

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4554-4561 ◽  
Author(s):  
Zia Shariat-Madar ◽  
Fakhri Mahdi ◽  
Alvin H. Schmaier

Abstract The serine protease prolylcarboxypeptidase (PRCP), isolated from human umbilical vein endothelial cells (HUVECs), is a plasma prekallikrein (PK) activator. PRCP cDNA was cloned in pMT/BIP/V5-HIS-C, transfected into Schneider insect (S2) cells, and purified from serum-free media. Full-length recombinant PRCP (rPRCP) activates PK when bound to high-molecular-weight kininogen (HK). Recombinant PRCP is inhibited by leupeptin, angiotensin II, bradykinin, anti-PRCP, diisopropyl-fluorophosphonate (DFP), phenylmethylsulfonyl fluoride (PMSF), and Z-Pro-Proaldehyde-dimethyl acetate, but not by 1 mM EDTA (ethylenediaminetetraacetic acid), bradykinin 1-5, or angiotensin 1-7. Corn trypsin inhibitor binds to prekallikrein to prevent rPRCP activation, but it does not directly inhibit the active site of either enzyme. Unlike factor XIIa, the ability of rPRCP to activate PK is blocked by angiotensin II, not by neutralizing antibody to factor XIIa. PRCP antigen is detected on HUVEC membranes using flow cytometry and laser scanning confocal microscopy. PRCP antigen does not colocalize with LAMP1 on nonpermeabilized HUVECs, but it partially colocalizes in permeabilized cells. PRCP colocalizes with all the HK receptors, gC1qR, uPAR, and cytokeratin 1 antigen, on nonpermeabilized HUVECs. PRCP activity and antigen expression on cultured HUVECs are blocked by a morpholino antisense oligonucleotide. These investigations indicate that rPRCP is functionally identical to isolated HUVEC PRCP and is a major HUVEC membrane-expressed, PK-activating enzyme detected in the intravascular compartment. (Blood. 2004;103:4554-4561)

2014 ◽  
Vol 306 (7) ◽  
pp. C659-C669 ◽  
Author(s):  
Krishna P. Subedi ◽  
Omkar Paudel ◽  
James S. K. Sham

Intracellular calcium (Ca2+) plays pivotal roles in distinct cellular functions through global and local signaling in various subcellular compartments, and subcellular Ca2+ signal is the key factor for independent regulation of different cellular functions. In vascular smooth muscle cells, subsarcolemmal Ca2+ is an important regulator of excitation-contraction coupling, and nucleoplasmic Ca2+ is crucial for excitation-transcription coupling. However, information on Ca2+ signals in these subcellular compartments is limited. To study the regulation of the subcellular Ca2+ signals, genetically encoded Ca2+ indicators (cameleon), D3cpv, targeting the plasma membrane (PM), cytoplasm, and nucleoplasm were transfected into rat pulmonary arterial smooth muscle cells (PASMCs) and Ca2+ signals were monitored using laser scanning confocal microscopy. In situ calibration showed that the Kd for Ca2+ of D3cpv was comparable in the cytoplasm and nucleoplasm, but it was slightly higher in the PM. Stimulation of digitonin-permeabilized cells with 1,4,5-trisphosphate (IP3) elicited a transient elevation of Ca2+ concentration with similar amplitude and kinetics in the nucleoplasm and cytoplasm. Activation of G protein-coupled receptors by endothelin-1 and angiotensin II preferentially elevated the subsarcolemmal Ca2+ signal with higher amplitude in the PM region than the nucleoplasm and cytoplasm. In contrast, the receptor tyrosine kinase activator, platelet-derived growth factor, elicited Ca2+ signals with similar amplitudes in all three regions, except that the rise-time and decay-time were slightly slower in the PM region. These data clearly revealed compartmentalization of Ca2+ signals in the subsarcolemmal regions and provide the basis for further investigations of differential regulation of subcellular Ca2+ signals in PASMCs.


2005 ◽  
Vol 11 (3) ◽  
pp. 268-277 ◽  
Author(s):  
W. Gray Jerome ◽  
Stefan Handt ◽  
Roy R. Hantgan

Acute myocardial infarction is a major cause of death and disability in the United States. Introducing thrombolytic agents into the clot to dissolve occlusive coronary artery thrombi is one method of treatment. However, despite advances in our knowledge of thrombosis and thrombolysis, survival rates following thrombolytic therapy have not improved substantially. This failure highlights the need for further study of the factors mediating clot stabilization. Using laser scanning confocal microscopy of clots formed from fluorescein-labeled fibrinogen, we investigated what effect binding of fibrin to the endothelial surface has on clot structure and resistance to lysis. Fluorescent fibrin clots were produced over human umbilical vein endothelial cells (HUVEC) and the clot structure analyzed. In the presence of HUVEC, fibrin near the endothelial surface was more organized and occurred in tighter bundles compared to fibrin just 50 μm above. The HUVEC influence on fibrin architecture was blocked by inhibitory concentrations of antibodies to αVor β3integrin subunits. The regions of the clots associated with endothelial cells were more resistant to lysis than the more homogenous regions distal to endothelium. Thus, our data show that binding of fibrin to integrins on endothelial surfaces produces clots that are more resistant to lysis.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 861
Author(s):  
Jacopo Cardellini ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.


2001 ◽  
Vol 34 (15) ◽  
pp. 5186-5191 ◽  
Author(s):  
Hiroshi Jinnai ◽  
Hiroshi Yoshida ◽  
Kohtaro Kimishima ◽  
Yoshinori Funaki ◽  
Yoshitsugu Hirokawa ◽  
...  

1994 ◽  
Vol 42 (11) ◽  
pp. 1413-1416 ◽  
Author(s):  
S L Erlandsen ◽  
E M Rasch

We investigated direct measurement of the DNA content of the parasitic intestinal flagellate Giardia lamblia through quantitation by Feulgen microspectrophotometry and also by visualization of Feulgen-stained DNA chromosomes within dividing cells by laser scanning confocal microscopy. Individual trophozoites of Giardia (binucleate) contained 0.144 +/- 0.018 pg of DNA/cell or 0.072 pg DNA/nucleus. Giardia lamblia cysts (quadranucleate) contained 0.313 +/- 0.003 pg DNA or 0.078 pg DNA/nucleus. The genome size (C) value per nucleus ranged between 6.5-7.1 x 10(7) BP for trophozoites and cysts, respectively. Confocal microscopic examination of Giardia trophozoites undergoing binary fission revealed five chromosome-like bodies within each nucleus. Further information about genome size and DNA content within different Giardia species may help to clarify the pivotal role of these primitive eukaryotic cells in evolutionary development.


2014 ◽  
Vol 926-930 ◽  
pp. 1124-1127
Author(s):  
Zhen Xun Jin ◽  
Li Li Zhang ◽  
Yan Wang ◽  
Lin Chuan Zeng ◽  
Yang Yu ◽  
...  

The aim of this study is to investigate the effects and mechanism of chloroquine (CQ) on the apoptosis induced by cisplatin in human gastric cancer BGC823 cells. MTT assay was used to detect the state of cell growth. The appearances of cellular apoptosis were detected by laser scanning confocal microscopy and light microscopy. The expressions of LC3 and p62 were detected by laser scanning confocal microscopy. MTT tests showed that the non-toxic dose of CQ could increase the inhibition rate of BGC823 cells induced by cisplatin. Under the light microscope, the ratio of apoptotic cells in the group treated with non-toxic dose of CQ combined with cisplatin was higher than that in the group treated with cisplatin alone. Hoechst33342 staining showed that the ratio of apoptotic cells in the combination group was higher than that in the cisplatin group. The expression and colocalization of LC3 and p62 proteins were significantly increased in the combination group. These results indicate that CQ can enhance the cell apoptosis induced by cisplatin in BGC823 cells, which is through the inhibition of autophagy.


2004 ◽  
Vol 842 ◽  
Author(s):  
Seiji Miura ◽  
Hiroyuki Okuno ◽  
Kenji Ohkubo ◽  
Tetsuo Mohri

ABSTRACTIn-situ observation of the formation and disappearance of the surface relief associated with the twinning during the order-disorder transitions among CuAu-I (L10), CuAu-II (PAP) and disordered fcc phases was conducted using Confocal Scanning Laser Microscopy equipped with a gold image furnace. The Retro effect was confirmed in poly-crystal samples, however no evidence was found in single-crystal samples. Also observed in poly-crystal samples are that the disordering temperature detected by the disappearing of relieves is different from grain to grain, and that grain boundary cracking alleviates the Retro effect. The observed phenomena were explained based on the crystallographic orientation relationship among grains investigated by FESEM/EBSD in terms of the elastic strain effect around grain boundaries induced by transition. It was confirmed that in each grain the surface relieves correspond to a set of two {011} planes having a <100> axis perpendicular to both planes in common. It was also found that the larger the average strain of two neighboring grains is, the lower the transition temperature. This observation was explained by the stress effect on the stability of a phase.


Sign in / Sign up

Export Citation Format

Share Document