Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance

Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3573-3581 ◽  
Author(s):  
Edward S. Morris ◽  
Kelli P. A. MacDonald ◽  
Vanessa Rowe ◽  
Diana H. Johnson ◽  
Tatjana Banovic ◽  
...  

Abstract We investigated whether the protection from graft-versus-host disease (GVHD) afforded by donor treatment with granulocyte colony-stimulating factor (G-CSF) could be enhanced by dose escalation. Donor treatment with human G-CSF prevented GVHD in the B6 → B6D2F1 murine model in a dose-dependent fashion, and murine G-CSF provided equivalent protection from GVHD at 10-fold lower doses. Donor pretreatment with a single dose of pegylated G-CSF (peg-G-CSF) prevented GVHD to a significantly greater extent than standard G-CSF (survival, 75% versus 11%, P < .001). Donor T cells from peg-G-CSF-treated donors failed to proliferate to alloantigen and inhibited the responses of control T cells in an interleukin 10 (IL-10)-dependent fashion in vitro. T cells from peg-G-CSF-treated IL-10-/- donors induced lethal GVHD; T cells from peg-G-CSF-treated wild-type (wt) donors promoted long-term survival. Whereas T cells from peg-G-CSF wt donors were able to regulate GVHD induced by T cells from control-treated donors, T cells from G-CSF-treated wt donors and peg-G-CSF-treated IL-10-/- donors did not prevent mortality. Thus, peg-G-CSF is markedly superior to standard G-CSF for the prevention of GVHD following allogeneic stem cell transplantation (SCT), due to the generation of IL-10-producing regulatory T cells. These data support prospective clinical trials of peg-G-CSF-mobilized allogeneic blood SCT. (Blood. 2004;103:3573-3581)

2020 ◽  
Vol 88 (11) ◽  
Author(s):  
Emily M. Siebers ◽  
Elizabeth S. Liedhegner ◽  
Michael W. Lawlor ◽  
Ronald F. Schell ◽  
Dean T. Nardelli

ABSTRACT The symptoms of Lyme disease are caused by inflammation induced by species of the Borrelia burgdorferi sensu lato complex. The various presentations of Lyme disease in the population suggest that differences exist in the intensity and regulation of the host response to the spirochete. Previous work has described correlations between the presence of regulatory T cells and recovery from Lyme arthritis. However, the effects of Foxp3-expressing CD4+ T cells existing prior to, and during, B. burgdorferi infection have not been well characterized. Here, we used C57BL/6 “depletion of regulatory T cell” mice to assess the effects these cells have on the arthritis-resistant phenotype characteristic of this mouse strain. We showed that depletion of regulatory T cells prior to infection with B. burgdorferi resulted in sustained swelling, as well as histopathological changes, of the tibiotarsal joints that were not observed in infected control mice. Additionally, in vitro stimulation of splenocytes from these regulatory T cell-depleted mice resulted in increases in gamma interferon and interleukin-17 production and decreases in interleukin-10 production that were not evident among splenocytes of infected mice in which Treg cells were not depleted. Depletion of regulatory T cells at various times after infection also induced rapid joint swelling. Collectively, these findings provide evidence that regulatory T cells existing at the time of, and possibly after, B. burgdorferi infection may play an important role in limiting the development of arthritis.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1656-1661 ◽  
Author(s):  
EA Copelan ◽  
SC Johnson ◽  
MR Grever ◽  
JF Sheridan ◽  
PJ Tutschka

Abstract Deoxycoformycin in combination with deoxyadenosine was used to purge 6C3HED malignant T cells from murine marrow in vitro. Adenosine deaminase activity of 6C3HED cells was ablated by incubation with 10(- 6) mol/L deoxycoformycin (dCF). During a 12-hour incubation with 10(-6) mol/L dCF and 10(-4) mol/L deoxyadenosine, tumor cells sequentially accumulated dATP, became depleted of NAD followed by ATP, then died. More than 5 logs of 6C3HED cells were killed as measured by survival of mice injected with treated tumor cells. Identical incubation of 5 x 10(6) marrow cells did not interfere with rescue of syngeneic lethally irradiated mice. Long-term survival was demonstrated in 12 of 14 mice that received marrow that had been contaminated with 5% 6C3HED cells, incubated with deoxycoformycin and deoxyadenosine, then used to rescue lethally irradiated mice. This murine model provides information not available from in vitro assays and may be useful in the development of strategies to purge malignant T cells from marrow.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2425-2425
Author(s):  
Bindu Kanathezhath ◽  
Myra Mizokami ◽  
Lynne Neumayr ◽  
Hua Guo ◽  
Mark C. Walters ◽  
...  

Abstract Abstract 2425 Poster Board II-402 Introduction: Unrelated cord blood transplantation (CBT) is associated with a risk of graft rejection due in part to a limiting cellular content of the CB unit. Increasing the cellular content of the CB unit mitigates the graft rejection risk, but methods to use adjuvant immuno-modulatory cell co-infusions have also been tested with some success. We have investigated the co-infusion of photochemically (psoralen S59) treated mature donor T lymphocytes in a major histocompatibility complex (MHC) [H2-haplotype] mismatched murine transplant model as a new method to facilitate engraftment of donor CB cells. Methods: We analyzed the rates of donor hematopoietic cell engraftment, graft versus host disease (GVHD), and long-term survival in H2 haplotype disparate (C57BL/6®AKR) mice after CBT. Three different experimental groups were transplanted after sublethal radiation. Group 1 received allogeneic full term newborn peripheral blood alone, group 2 was transplanted with the same donor cells and unmanipulated donor T cells, and group 3 was transplanted with the similar donor cells and psoralen (S-59) treated donor T cells. Results: We observed a low rate of donor engraftment after transplantation with cord blood alone (Group 1). There was better engraftment but a high rate of fatal GVHD after transplantation with cord blood and unmodified donor T-cells (Group 2). The best results were observed after transplantation with 3 × 106 nucleated cord blood cells and 9 ×106 S-59 treated T cells (Group 3b). The engraftment rate was 75% compared to 12.5% after transplantation with 6 × 106 CB cells alone (p=0.04). The long-term survival in group 3 was 100% and the rate and severity of GVHD were minimal. Engraftment observed after CBT with unmodified donor T-cells (group 2) was accompanied by severe GVHD and poor survival. Donor myeloid, B cells and T cells were documented in the spleen and bone marrow of Group 3 mice by 30 days after CBT, although full hematological recovery was delayed until 50-60 days after CBT. Conclusions: These results show improved cord blood engraftment kinetics across a disparate H2 haplotype by adding psoralen-treated donor T lymphocytes. Co-transplantation of psoralen treated lymphocytes with CB cells facilitated durable engraftment of donor MHC high/c-kit+ cells in the marrow and splenic compartments with complete but delayed hematopoietic recovery. The low GVHD risk and excellent long-term survival observed in this murine model suggests the potential for clinical application. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1175-1183 ◽  
Author(s):  
Brian Kavanagh ◽  
Shaun O'Brien ◽  
David Lee ◽  
Yafei Hou ◽  
Vivian Weinberg ◽  
...  

AbstractCytotoxic T lymphocyte–associated antigen 4 (CTLA4) delivers inhibitory signals to activated T cells. CTLA4 is constitutively expressed on regulatory CD4+ T cells (Tregs), but its role in these cells remains unclear. CTLA4 blockade has been shown to induce antitumor immunity. In this study, we examined the effects of anti-CTLA4 antibody on the endogenous CD4+ T cells in cancer patients. We show that CTLA4 blockade induces an increase not only in the number of activated effector CD4+ T cells, but also in the number of CD4+ FoxP3+ Tregs. Although the effects were dose-dependent, CD4+ FoxP3+ regulatory T cells could be expanded at lower antibody doses. In contrast, expansion of effector T cells was seen only at the highest dose level studied. Moreover, these expanded CD4+ FoxP3+ regulatory T cells are induced to proliferate with treatment and possess suppressor function. Our results demonstrate that treatment with anti-CTLA4 antibody does not deplete human CD4+ FoxP3+ Tregs in vivo, but rather may mediate its effects through the activation of effector T cells. Our results also suggest that CTLA4 may inhibit Treg proliferation similar to its role on effector T cells. This study is registered at http://www.clinicaltrials.gov/ct2/show/NCT00064129, registry number NCT00064129.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3237-3237
Author(s):  
Carolina S. Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract The adoptive transfer of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) clones that have been isolated and expanded in vitro is a promising treatment modality for both human malignancies and infections. However, establishing immunity of sufficient magnitude and persistence for sustained efficacy is a limitation of this approach. Recent studies have identified a critical role for cytokine signaling including that mediated by IL15 in the establishment and maintenance of CD8+ T cell memory, suggesting that protocols for generating and transferring antigen-specific T cells might be improved. Interleukin-2 (IL2) is the T cell growth factor that has been widely used in vitro and in vivo for promoting T cell proliferation and persistence, but prolonged exposure of T cells to IL2 can enhance susceptibility to cell death and limit CD8+ memory T cell survival. IL15 is a novel cytokine that shares some activities with IL2 such as the induction of T cell proliferation, but exerts contrasting effects on the homeostasis of CD8+ T cell memory in experimental models. Here, we study the utility of IL15 to enhance the long-term survival and function of human and macaque antigen-specific CD8+ CTL clones in vitro. Human and macaque CD8+ CTL clones reactive against CMV were isolated by limiting dilution, expanded over 14 days in the presence of IL2 or IL15 (1–10 ng/ml), and then rested for >4 weeks in media alone and with IL2 or IL15 at 0.01–10 ng/ml. Surviving T cells were enumerated at intervals, monitored for cell surface phenotype, and assayed for cytotoxicity by chromium release assay. CTL expanded in IL2 or IL15 proliferated equivalently over 14 days with a median of 1100 and 1400 fold increase in number, displayed surface markers consistent with an effector memory phenotype (CD45RA−CD62L−CCR7−CD28−), and showed comparable cytotoxicity (n=4). However, exposure after 14 days to IL15 at doses as little as 0.05-0.1 ng/ml greatly enhanced the survival of the CD8+ CTL as determined by Annexin V staining. By contrast, cells cultured without cytokines or with IL2 declined >80% in number over 3 or 11 days, respectively. Of note, IL15 at higher doses (>0.5 ng/ml), but not IL2, efficiently promoted sustained cell growth illustrated by labeling cells with CFSE. Cells cultured with IL15 displayed 1.5-fold increased expression of antiapoptotic molecules such as Bcl-xL and Bcl-2 over those plated in IL2 (n=4), indicating IL15 mediated its effects at least in part by preventing apoptosis. Of note, the cytotoxicity of CTL rested in IL2 was markedly reduced (>60%, n=3), while the presence of IL15 permitted for sustained CTL function and expansion after restimulation. The responses of human and macaque CTL clones to IL15 were equivalent suggesting in vivo studies of T cell transfer in macaques may be predictive of results in humans. We have constructed retroviral vectors encoding intracytoplasmic truncated macaque CD34 or CD19 genes that could serve as nonimmunogenic selectable marker to track macaque T cells after transfer. Macaque T cells were efficiently transduced to express CD34t and CD19t (>50%), and enriched to high purity by immunomagnetic selection. Studies to examine the safety and utility of IL15 on the survival of adoptively transferred CTL in macaques are in progress. Collectively, our data support that novel cytokines such as IL15 may prove useful to augment the long-term survival and effector function of ex vivo expanded antigen-specific CD8+ CTL clones after transfer.


1984 ◽  
Vol 159 (1) ◽  
pp. 234-243 ◽  
Author(s):  
J D Tyler ◽  
S J Galli ◽  
M E Snider ◽  
A M Dvorak ◽  
D Steinmuller

The long-accepted notion that alloimmune cytolytic T cells (CTL) mediate transplantation immunity has recently been called into question. In order to ascertain directly whether alloimmune CTL can mediate destruction of foreign tissue, we tested the ability of mouse CTL expanded as cloned populations in vitro to destroy allogeneic skin in vivo. The results of these studies prove unequivocally that cloned Lyt-2+ CTL can perform this task in an immunologically specific, H-2-restricted, and dose-dependent fashion.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yamato Sajiki ◽  
Satoru Konnai ◽  
Shinya Goto ◽  
Tomohiro Okagawa ◽  
Kosuke Ohira ◽  
...  

Regulatory T cells (Tregs) regulate immune responses and maintain host immune homeostasis. Tregs contribute to the disease progression of several chronic infections by oversuppressing immune responses via the secretion of immunosuppressive cytokines, such as transforming growth factor (TGF)-β and interleukin-10. In the present study, we examined the association of Tregs with Mycoplasma bovis infection, in which immunosuppression is frequently observed. Compared with uninfected cattle, the percentage of Tregs, CD4+CD25highFoxp3+ T cells, was increased in M. bovis-infected cattle. Additionally, the plasma of M. bovis-infected cattle contained the high concentrations of TGF-β1, and M. bovis infection induced TGF-β1 production from bovine immune cells in in vitro cultures. Finally, we analyzed the immunosuppressive effects of TGF-β1 on bovine immune cells. Treatment with TGF-β1 significantly decreased the expression of CD69, an activation marker, in T cells, and Th1 cytokine production in vitro. These results suggest that the increase in Tregs and TGF-β1 secretion could be one of the immunosuppressive mechanisms and that lead to increased susceptibility to other infections in terms of exacerbation of disease during M. bovis infection.


1986 ◽  
Vol 163 (5) ◽  
pp. 1100-1112 ◽  
Author(s):  
M A Cheever ◽  
D B Thompson ◽  
J P Klarnet ◽  
P D Greenberg

Mice bearing disseminated syngeneic FBL-3 leukemia were treated with cyclophosphamide plus long term-cultured T cells immune to FBL-3. The cultured T cells for therapy had been induced to grow in vitro for 62 d by intermittent stimulation with irradiated FBL-3. At the time of therapy, such antigen-driven long term-cultured T cells were greatly expanded in number, proliferated in vitro in response to FBL-3, and were specifically cytotoxic. Following adoptive transfer, donor T cells persisting in the host were identified and counted using donor and host mice congenic for the T cell marker Thy-1. The results show that antigen-driven long term-cultured T cells proliferated rapidly in vivo, distributed widely in host lymphoid organs, and were effective in tumor therapy. Moreover, the already rapid in vivo growth rate of donor T cells could be augmented by administration of exogenous IL-2. When cured mice were examined 120 d after therapy, donor L3T4+ T cells and donor Lyt-2+ T cells could be found in large numbers in host ascites, spleen, and mesenteric and axillary lymph nodes. The persisting donor T cells proliferated in vitro, and became specifically cytotoxic in response to FBL-3, demonstrating that antigen-driven long term-cultured T cells can persist long term in vivo and provide immunologic memory.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Lei Gao ◽  
Yan-Fen Chai ◽  
An-Long Qi ◽  
Ying Yao ◽  
Yan-Cun Liu ◽  
...  

Regulatory T cells (Tregs) appear to be involved in sepsis-induced immune dysfunction; neuropilin-1 (Nrp-1) was identified as a surface marker for CD4+CD25+Tregs. In the current study, we investigated the negative immunoregulation of Nrp-1highCD4+CD25+Tregs and the potential therapeutic value of Nrp-1 in sepsis. Splenic CD4+CD25+Tregs from cecal ligation and puncture (CLP) mouse models were further segregated into Nrp-1highTregs and Nrp-1lowTregs; they were cocultured with CD4+CD25−  T cells. The expression of forkhead/winged helix transcription factor-3 (Foxp-3), cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), membrane associated transforming growth factor-β (TGF-βm+), apoptotic rate, and secretive ability [including TGF-β and interleukin-10 (IL-10)] for various types of Tregs, as well as the immunosuppressive ability of Tregs on CD4+CD25−  T cells, were determined. Meanwhile, the impact of recombinant Nrp-1 polyclonal antibody on the demethylation of Foxp-3-TSDR (Treg-specific demethylated region) was measured in in vitro study. Sepsis per se markedly promoted the expression of Nrp-1 of CD4+CD25+Tregs. Foxp-3/CTLA-4/TGF-βm+ of Nrp-1highTregs were upregulated by septic challenge. Nrp-1highTregs showed strong resilience to apoptosis and secretive ability and the strongest immunosuppressive ability on CD4+CD25−  T cells. In the presence of lipopolysaccharide (LPS), the recombinant Nrp-1 polyclonal antibody reduced the demethylation of Foxp-3-TSDR. Nrp-1highTregs might reveal primary negative immunoregulation in sepsis; Nrp-1 could represent a new potential therapeutic target for the study of immune regulation in sepsis.


Sign in / Sign up

Export Citation Format

Share Document