Identification of Flk-1 target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4536-4544 ◽  
Author(s):  
Alessio Zippo ◽  
Alessandra De Robertis ◽  
Monia Bardelli ◽  
Federico Galvagni ◽  
Salvatore Oliviero

Abstract The tyrosine kinase receptor fetal liver kinase 1 (Flk-1) plays a crucial role in vasculogenesis and angiogenesis, but its target genes remain elusive. Comparing Flk-1+/+ with Flk-1-/- embryonic stem (ES) cells, we identified transcripts regulated by the vascular endothelial growth factor A (VEGF-A)/Flk-1 pathway at an early stage of their differentiation to endothelial and mural precursors. Further analysis of a number of these genes (Nm23-M1, Nm23-M2, Slug, Set, pp32, Cbp, Ship-1, Btk, and Pim-1) showed that their products were transiently up-regulated in vivo in endothelial cells (ECs) during angiogenesis of the ovary, and their mRNA was rapidly induced in vitro by VEGF-A in human umbilical cord vein endothelial cells (HUVECs). Functional analysis by RNA interference (RNAi) in ES cells induced to differentiate demonstrated that Pim-1 is required for their differentiation into ECs and smooth muscle cells (SMCs). In HUVECs, RNAi showed that Pim-1 is required in ECs for VEGF-A-dependent proliferation and migration. The identification of Flk-1 target genes should help in elucidating the molecular pathways that govern the vasculogenesis and angiogenesis processes. (Blood. 2004;103:4536-4544)

Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1801-1809 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Yuichi Oike ◽  
Hisao Ogawa ◽  
Yasuhiro Ito ◽  
Hajime Fujisawa ◽  
...  

Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-165 (VEGF165) and acts as a coreceptor that enhances the function of VEGF165 through VEGF receptor-2 (VEGFR-2). Studies using transgenic and knock-out mice of NP-1 indicated that this molecule is important for vascular development as well as neuronal development. We recently reported that clustered soluble NP-1 phosphorylates VEGFR-2 on endothelial cells with a low dose of VEGF165 and rescues the defective vascularity of the NP-1−/− embryo in vitro and in vivo. Here we show that NP-1 is expressed by CD45+ hematopoietic cells in the fetal liver, can bind VEGF165, and phosphorylates VEGFR-2 on endothelial cells. CD45+NP-1+ cells rescued the defective vasculogenesis and angiogenesis in the NP-1−/− P-Sp (para-aortic splanchnopleural mesodermal region) culture, although CD45+NP-1− cells did not. Moreover, CD45+NP-1+ cells together with VEGF165 induced angiogenesis in an in vivo Matrigel assay and cornea neovascularization assay. The extracellular domain of NP-1 consists of “a,” “b,” and “c” domains, and it is known that the “a” and “c” domains are necessary for dimerization of NP-1. We found that both the “a” and “c” domains are essential for such rescue of defective vascularities in the NP-1 mutant. These results suggest that NP-1 enhances vasculogenesis and angiogenesis exogenously and that dimerization of NP-1 is important for enhancing vascular development. In NP-1−/− embryos, vascular sprouting is impaired at the central nervous system (CNS) and pericardium where VEGF is not abundant, indicating that NP-1–expressing cells are required for normal vascular development.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Asif Pathan ◽  
Talha Farid ◽  
Abdur Rahman Khan ◽  
Marjan Nasr ◽  
Marcin Wysoczynski ◽  
...  

Cell-based therapy is considered a promising approach to treat the damaged heart due to myocardial infarction. Although the mechanisms for their beneficial action are not yet clear, exosome/extracellular vesicles (EVs) secreted by these cells may be involved in their reparative paracrine signaling. Previous studies have suggested that EVs isolated from several cell types (e.g. cardiosphere-derived cells, embryonic stem cell, CD34+ stem cells) induce angiogenic activity both in vitro and in vivo . Here, we investigated whether EVs secreted by adult human cardiac mesenchymal cells (hCMCs) exhibit pro-angiogenic activity, and if so, what signaling molecules are involved in this process. hCMCs were isolated from right atrial appendage of patients undergoing cardiac procedures and were characterized by the expression of classical mesenchymal markers- CD29 (99.1%), CD73 (99.0%), CD90 (20.4%), CD105 (99.3%), CD 31 (16.8%), CD34 (0.9%) and CD45 (0.1%). EVs isolated from serum-free 24-hour hCMC conditioned media using PEG4000-based precipitation technique exhibited two distinct population of particles with size range of 10-60nm and 100-500nm in diameter; expressed characteristic exosomal markers- CD63, HSP70, Flotillin-1 and were negative for cellular organelle markers- calreticulin (ER and apoptotic bodies), prohibitin (mitochondria), GM130 (Golgi), Lamin B (nuclear protein), β-actin (cytoskeleton) and PMP70 (peroxisomes) as determined by immunoblotting. In vitro assays revealed that hCMC EVs promote human umbilical cord endothelial cells (HUVECs) proliferation, transwell migration in Boyden chamber and tube formation on Matrigel, indicative of enhanced angiogenesis. Angiogenic proteomic array identified that angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2) proteins are highly enriched in EVs secreted by hCMCs. Furthermore, hCMC EV mediated HUVEC migration and tube formation was inhibited by TIE2 kinase inhibitor. Overall, these findings suggest that ANG-1 and ANG-2 are the key component of hCMC secreted EVs and they promote angiogenesis by activating TIE2 receptor in endothelial cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Guillaume Pourcher ◽  
Christelle Mazurier ◽  
Yé Yong King ◽  
Marie-Catherine Giarratana ◽  
Ladan Kobari ◽  
...  

We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34+cells. In thisin vitromodel, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramaticin vitroexpansion (100-fold more when compared to CB CD34+) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10–15% cloning efficiency for adult CD34+cells. This work supports the idea that FL remains a model of study and is not a candidate forex vivoRBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.


Endocrinology ◽  
2005 ◽  
Vol 146 (2) ◽  
pp. 776-783 ◽  
Author(s):  
Yan-Yun Liu ◽  
Gregory A. Brent

Abstract T3 is required for normal early development, but relatively few T3-responsive target genes have been identified. In general, in vitro stem cell differentiation techniques stimulate a wide range of developmental programs, including thyroid hormone receptor (TR) pathways. We developed several in vitro stem cell models to more specifically identify TR-mediated gene expression in early development. We found that embryonic carcinoma (EC) cells have reduced T3 nuclear binding capacity and only modestly express the known T3 target genes, neurogranin (RC3) and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), in response to T3. Full T3 induction in transient transfection of EC cells was restored with cotransfection of a TR expression vector. We, therefore, performed gene expression profiles in wild-type embryonic stem (ES) cells compared with expression in cells with deficient (EC) or mutant TR (TRα P398H mutant ES cells), to identify T3 target genes. T3 stimulation of wild-type ES cells altered mRNA expression of 610 known genes (26% of those studied), although only approximately 60 genes (1%) met criteria for direct T3 stimulation based on the magnitude of induction and requirement for the presence of TR. We selected five candidate T3 target genes, neurexophilin 2, spermatid perinuclear RNA-binding protein (SPNR), kallikrein-binding protein (KBP), prostate-specific membrane antigen (PSMA), and synaptotagmin II, for more detailed study. T3 responsiveness of these genes was evaluated in both in vitro endogenous gene expression and in vivo mouse model systems. These genes identified in a novel stem cell system, including those induced and repressed in response to T3, may mediate thyroid hormone actions in early development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4264-4264
Author(s):  
Jin-Young Baek ◽  
Yun-Hee Rhee ◽  
Kwang-Yul Cha ◽  
Hyung-Min Chung

Abstract Prolonged propagation of human embryonic stem (ES) cells is currently achieved by co-culture with primary or immortalized mouse embryonic fibroblast (MEF) cells. In order to replace the heterologous with homologous co-culture systems, an attempt was made using mononuclear cells derived from human fetal liver. Human fetal liver-derived mesenchymal-like stem cells (FL-MLSC) can be maintained for the prolonged period of time. They showed the characteristics of mesenchymal stem cells in various aspects. They retained a normal diploid karyotype and growth characteristics over the successive culture. Human ES cells cultured on human FL-MLSC cells up to 8 passages displayed the unique morphology and molecular markers characteristic for undifferentiated human ES cells as cultured on MEF cells. Alkaline phosphatase activity was detected in human ES cells co-cultured on human FL-MLSC. Immunocytochemical analyses showed that expressions of stage-specific embryonic antigen-3, -4 and Oct-4 were not altered on human ES cells cultured on human FLDSC. Reverse-transcriptase PCR analyses showed that similar expressions of Oct-4 and Nanog genes, markers for undifferentiated ES cells, were also observed in human ES cells cultured on both human FL-MLSC and MEF cells. Furthermore, human ES cells cultured on human FL-MLSC retained unique differentiation potentials in culture when allowed to form embryoid body. Results of this study suggest that human FL-MLSC can support the maintenance of human ES cell in vitro.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3846-3846
Author(s):  
Ji-Yoon Noh ◽  
Shilpa Gandre-Babbe ◽  
Yuhuan Wang ◽  
Vincent Hayes ◽  
Yu Yao ◽  
...  

Abstract Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent potential sources of megakaryocytes and platelets for transfusion therapy. However, most current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny, including platelet-releasing megakaryocytes. Mutations in the mouse and human genes encoding transcription factor GATA1 cause accumulation of proliferating, developmentally arrested megakaryocytes. Previously, we reported that in vitro differentiation of Gata1-null murine ES cells generated self-renewing hematopoietic progenitors termed G1ME cells that differentiated into erythroblasts and megakaryocytes upon restoration of Gata1 cDNA by retroviral transfer. However, terminal maturation of Gata1-rescued megakaryocytes was aberrant with immature morphology and no proplatelet formation, presumably due to non-physiological expression of GATA1. We now engineered wild type (WT) murine ES cells that express doxycycline (dox)-regulated Gata1 short hairpin (sh) RNAs to develop a strategy for Gata1-blockade that upon its release, restores physiologic GATA1 expression during megakaryopoiesis. In vitro hematopoietic differentiation of control scramble shRNA-expressing ES cells with dox and thrombopoietin (TPO) produced megakaryocytes that underwent senescence after 7 days. Under similar differentiation conditions, Gata1 shRNA-expressing ES cells produced immature hematopoietic progenitors, termed G1ME2 cells, which replicated continuously for more than 40 days, resulting in ~1013-fold expansion (N=4 separate experiments). Upon dox withdrawal with multi-lineage cytokines present (EPO, TPO, SCF, GMCSF and IL3), endogenous GATA1 expression was restored to G1ME2 cells followed by differentiation into erythroblasts and megakaryocytes, but no myeloid cells. In clonal methylcellulose assays, dox-deprived G1ME2 cells produced a mixture of erythroid, megakaryocytic and erythro-megakaryocytic colonies. In liquid culture with TPO alone, dox-deprived G1ME2 cells formed mature megakaryocytes in 5-6 days, as determined by morphology, ultrastructure, acetylcholinesterase staining, upregulated megakaryocytic gene expression (Vwf, Pf4, Gp1ba, Selp, Ppbp), CD42b surface expression, increased DNA ploidy and proplatelet production. Compared to G1ME cells rescued with Gata1 cDNA retrovirus, dox-deprived G1ME2 cells exhibited more robust megakaryocytic maturation, similar to that of megakaryocytes produced from cultured fetal liver. Importantly, G1ME2 cell-derived megakaryocytes generated proplatelets in vitro and functional platelets in vivo (~40 platelets/megakaryocyte with a circulating half life of 5-6 hours). These platelets were actively incorporated into growing arteriolar thrombi at sites of laser injury and subsequently expressed the platelet activation marker p-selectin (N=3-4 separate experiments). Our findings indicate that precise timing and magnitude of a transcription factor is required for proper terminal hematopoiesis. We illustrate this principle using a novel, readily reproducible strategy to expand ES cell-derived megakaryocyte-erythroid progenitors and direct their differentiation into megakaryocytes and then into functional platelets in clinically relevant numbers. Disclosures No relevant conflicts of interest to declare.


1995 ◽  
Vol 4 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Una Chen ◽  
Hoyan Mok

Mouse embryonic stem (ES) cells in culture can differentiate into late stages of many lineage-committed precursor cells. Under appropriate organ-culture conditions, ES cels differentiate into lymphoidlike cells at a stage equivalent to lymphoid cells found in fetal liver. These hematopoietic precursors are located in cup-shaped structures found in some embryoid bodies; we called such embryoid bodies “ES fetuses.” In this study, we have followed the maturation of hematopoietic cells after implantation of ES fetuses into nude mice for 3 weeks. ES-cell-derived lymphoid cells-pre-B cells, mature B cells, and mature T cells were found in all lymphoid organs. Interestingly, there was also an increase of T cells of host origin. Because native nude mouse lack thymus, these T cells might be educated by thymuslike epithelium generated from ES fetuses. Practical applications of this combinedin vitroandin vivosystem are discussed.


Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 47-50 ◽  
Author(s):  
Lina Jansson ◽  
Jonas Larsson

Abstract We report a rapid and highly efficient approach to generate mice in which the hematopoietic system is derived from embryonic stem (ES) cells. We show that ES cells injected into blastocysts from the c-kit–deficient W41/W41 mouse strain have a clear advantage over the W41/W41 blastocyst-derived inner cell mass cells in founding the hematopoietic system. Fetal liver hematopoietic stem cells from W41/W41 blastocyst complementation embryos can be transplanted to establish large cohorts of bone marrow chimeras with hematopoiesis of practically pure ES-cell origin. Using ES cells with site-directed modifications, we show how this system can be used to drive inducible transgene expression in hematopoietic cells in a robust and reliable manner both in vitro and in vivo. The approach avoids the cost and time constraints associated with the creation of standard transgenic mouse strains while taking advantage of the sophisticated site-directed manipulations that are possible in ES cells.


Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 912-920 ◽  
Author(s):  
Jody J. Haigh ◽  
Masatsugu Ema ◽  
Katharina Haigh ◽  
Marina Gertsenstein ◽  
Peter Greer ◽  
...  

AbstractRelatively little is known about the modulators of the vascular endothelial growth factor A (VEGF-A)/Flk1 signaling cascade. To functionally characterize this pathway, VEGF-A stimulation of endothelial cells was performed. VEGF-A–mediated Flk1 activation resulted in increased translocation of the endogenous Fps/Fes cytoplasmic tyrosine kinase to the plasma membrane and increased tyrosine phosphorylation, suggesting a role for Fps/Fes in VEGF-A/Flk1 signaling events. Addition of a myristoylation consensus sequence to Fps/Fes resulted in VEGF-A–independent membrane localization of Fps/Fes in endothelial cells. Expression of the activated Fps/Fes protein in Flk1-deficient embryonic stem (ES) cells rescued their contribution to the developing vascular endothelium in vivo by using ES cell–derived chimeras. Activated Fps/Fes contributed to this rescue event by restoring the migratory potential to Flk1 null progenitors, which is required for movement of hemangioblasts from the primitive streak region into the yolk sac proper. Activated Fps/Fes in the presence of Flk1 increased the number of hemangioblast colonies in vitro and increased the number of mesodermal progenitors in vivo. These results suggest that Fps/Fes may act synergistically with Flk1 to modulate hemangioblast differentiation into the endothelium. We have also demonstrated that activated Fps/Fes causes hemangioma formation in vivo, independently of Flk1, as a result of increasing vascular progenitor density.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 886-893 ◽  
Author(s):  
Hideyo Hirai ◽  
Minetaro Ogawa ◽  
Norio Suzuki ◽  
Masayuki Yamamoto ◽  
Georg Breier ◽  
...  

Abstract Accumulating evidence in various species has suggested that the origin of definitive hematopoiesis is associated with a special subset of endothelial cells (ECs) that maintain the potential to give rise to hematopoietic cells (HPCs). In this study, we demonstrated that a combination of 5′-flanking region and 3′ portion of the first intron of the Flk-1 gene (Flk-1 p/e) that has been implicated in endothelium-specific gene expression distinguishes prospectively the EC that has lost hemogenic activity. We assessed the activity of this Flk-1 p/e by embryonic stem (ES) cell differentiation culture and transgenic mice by using theGFP gene conjugated to this unit. The expression ofGFP differed from that of the endogenous Flk-1gene in that it is active in undifferentiated ES cells and inactive in Flk-1+ lateral mesoderm. Flk-1 p/e becomes active after generation of vascular endothelial (VE)–cadherin+ ECs. Emergence of GFP− ECs preceded that of GFP+ ECs, and, finally, most ECs expressed GFP both in vitro and in vivo. Cell sorting experiments demonstrated that only GFP− ECs could give rise to HPCs and preferentially expressed Runx1 and c-Myb genes that are required for the definitive hematopoiesis. Integration of both GFP+ and GFP− ECs was observed in the dorsal aorta, but cell clusters appeared associated only to GFP−ECs. These results indicate that activation of Flk-1 p/e is associated with a process that excludes HPC potential from the EC differentiation pathway and will be useful for investigating molecular mechanisms underlying the divergence of endothelial and hematopoietic lineages.


Sign in / Sign up

Export Citation Format

Share Document