MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4260-4268 ◽  
Author(s):  
Thomas Vogl ◽  
Stephan Ludwig ◽  
Matthias Goebeler ◽  
Anke Strey ◽  
Irmgard S. Thorey ◽  
...  

Abstract MRP14 (S100A9) is the major calcium-binding protein of neutrophils and monocytes. Targeted gene disruption reveals an essential role of this S100 protein for transendothelial migration of phagocytes. The underlying molecular mechanism comprises major alterations of cytoskeletal metabolism. MRP14, in complex with its binding partner MRP8 (S100A8), promotes polymerization of microtubules. MRP14 is specifically phosphorylated by p38 mitogen-activated protein kinase (MAPK). This phosphorylation inhibits MRP8/MRP14-induced tubulin polymerization. Phosphorylation of MRP14 is antagonistically regulated by binding of MRP8 and calcium. The biologic relevance of these findings is confirmed by the fact that MAPK p38 fails to stimulate migration of MRP14-/- granulocytes in vitro and MRP14-/- mice show a diminished recruitment of granulocytes into the granulation tissue during wound healing in vivo. MRP14-/- granulocytes contain significantly less polymerized tubulin, which subsequently results in minor activation of Rac1 and Cdc42 after stimulation of p38 MAPK. Thus, the complex of MRP8/MRP14 is the first characterized molecular target integrating MAPK- and calcium-dependent signals during migration of phagocytes.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hideki Kitaura ◽  
Masahiko Ishida ◽  
Keisuke Kimura ◽  
Haruki Sugisawa ◽  
Akiko Kishikawa ◽  
...  

Lipopolysaccharide (LPS) is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP), the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL) expression and toll-like receptor 4 (TLR4) expression bothin vivoandin vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK) signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Feifei Wang ◽  
Lianmei Zhao ◽  
Juan Zhang ◽  
Zesong Meng ◽  
Chaoxi Zhou ◽  
...  

One of the treatment failures for colorectal cancer (CRC) is resistance to chemotherapy drugs. miRNAs have been demonstrated to be a new regulator of pathobiological processes in various tumors. While few studies have explored the specific role of miR-141 in mediating 5-fluorouracil (5-FU) sensitivity of CRC cells, the present study aimed to detect the contribution of miR-141 in 5-FU sensitivity. The CRC cells viability was measured by MTS assay and cell colony forming. The expression of miR-141 and its downstream targets were assessed by reverse transcription quantitative PCR, Western blotting, and immunohistochemistry. The functional assays were conducted using CRC cells and nude mice. At the present study, we found overexpression of miR-141 could inhibit proliferation, migration, tumor-forming and invasive potential of CRC cells in vitro and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was verified as a directed target of miR-141. The combination treatment of miR-141 with 5-FU, directly targetting MAP4K4, could better inhibit invasion and metastasis of CRC cells colony than either one alone. Furthermore, overexpression of miR-141, targetting MAP4K4, enhanced the effected of 5-FU and suppressed the malignant biological behaviors, in vivo. Our findings showed that 5-FU inhibited malignant behavior of human CRC cells in vitro and in vivo by enhancing the efficiency of miR-141. Our data suggested that targetting the miR-141/MAP4K4 signaling pathway could be a potential molecular target that may enhance chemotherapeutic efficacy in the treatment of CRC.


2006 ◽  
Vol 396 (2) ◽  
pp. 201-214 ◽  
Author(s):  
Liliana Santamaria-Kisiel ◽  
Anne C. Rintala-Dempsey ◽  
Gary S. Shaw

The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40° alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009937
Author(s):  
Wakako Furuyama ◽  
Kyle Shifflett ◽  
Heinz Feldmann ◽  
Andrea Marzi

Ebola virus (EBOV) expresses three different glycoproteins (GPs) from its GP gene. The primary product, soluble GP (sGP), is secreted in abundance during infection. EBOV sGP has been discussed as a potential pathogenicity factor, however, little is known regarding its functional role. Here, we analyzed the role of sGP in vitro and in vivo. We show that EBOV sGP has two different functions that contribute to infectivity in tissue culture. EBOV sGP increases the uptake of virus particles into late endosomes in HEK293 cells, and it activates the mitogen-activated protein kinase (MAPK) signaling pathway leading to increased viral replication in Huh7 cells. Furthermore, we analyzed the role of EBOV sGP on pathogenicity using a well-established mouse model. We found an sGP-dependent significant titer increase of EBOV in the liver of infected animals. These results provide new mechanistic insights into EBOV pathogenicity and highlight EBOV sGP as a possible therapeutic target.


2001 ◽  
Vol 12 (6) ◽  
pp. 1811-1817 ◽  
Author(s):  
Stephen A. Jesch ◽  
Timothy S. Lewis ◽  
Natalie G. Ahn ◽  
Adam D. Linstedt

The role of the mitogen-activated protein kinase kinase (MKK)/extracellular-activated protein kinase (ERK) pathway in mitotic Golgi disassembly is controversial, in part because Golgi-localized targets have not been identified. We observed that Golgi reassembly stacking protein 55 (GRASP55) was phosphorylated in mitotic cells and extracts, generating a mitosis-specific phospho-epitope recognized by the MPM2 mAb. This phosphorylation was prevented by mutation of ERK consensus sites in GRASP55. GRASP55 mitotic phosphorylation was significantly reduced, both in vitro and in vivo, by treatment with U0126, a potent and specific inhibitor of MKK and thus ERK activation. Furthermore, ERK2 directly phosphorylated GRASP55 on the same residues that generated the MPM2 phospho-epitope. These results are the first demonstration of GRASP55 mitotic phosphorylation and indicate that the MKK/ERK pathway directly phosphorylates the Golgi during mitosis.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
J Terrig Thomas ◽  
D Eric Dollins ◽  
Kristin R Andrykovich ◽  
Tehyen Chu ◽  
Brian G Stultz ◽  
...  

The matricellular protein SMOC (Secreted Modular Calcium binding protein) is conserved phylogenetically from vertebrates to arthropods. We showed previously that SMOC inhibits bone morphogenetic protein (BMP) signaling downstream of its receptor via activation of mitogen-activated protein kinase (MAPK) signaling. In contrast, the most prominent effect of the Drosophila orthologue, pentagone (pent), is expanding the range of BMP signaling during wing patterning. Using SMOC deletion constructs we found that SMOC-∆EC, lacking the extracellular calcium binding (EC) domain, inhibited BMP2 signaling, whereas SMOC-EC (EC domain only) enhanced BMP2 signaling. The SMOC-EC domain bound HSPGs with a similar affinity to BMP2 and could expand the range of BMP signaling in an in vitro assay by competition for HSPG-binding. Together with data from studies in vivo we propose a model to explain how these two activities contribute to the function of Pent in Drosophila wing development and SMOC in mammalian joint formation.


2008 ◽  
Vol 7 (5) ◽  
pp. 826-835 ◽  
Author(s):  
Miriam Sansó ◽  
Madelaine Gogol ◽  
José Ayté ◽  
Chris Seidel ◽  
Elena Hidalgo

ABSTRACT The mitogen-activated protein kinase Sty1 is essential for the regulation of transcriptional responses that promote cell survival in response to different types of environmental stimuli in Schizosaccharomyces pombe. Upon stress activation, Sty1 reversibly accumulates in the nucleus, where it stimulates gene expression via the Atf1 transcription factor. The Atf1 protein forms a heterodimer with Pcr1, but the specific role of this association is controversial. We have carried out a comparative analysis of strains lacking these proteins individually. We demonstrate that Atf1 and Pcr1 have similar but not identical roles in S. pombe, since cells lacking Pcr1 do not share all the phenotypes reported for Δatf1 cells. Northern blot and microarray analyses demonstrate that the responses to specific stresses of cells lacking either Pcr1 or Atf1 do not fully overlap, and even though most Atf1-dependent genes induced by osmotic stress are also Pcr1 dependent, a subset of genes require only the presence of Atf1 for their induction. Whereas binding of Atf1 to most stress-dependent genes requires the presence of Pcr1, we demonstrate here that Atf1 can bind to the Pcr1-independent promoters in a Δpcr1 strain in vivo. Furthermore, these analyses show that both proteins have a global repressive effect on stress-dependent and stress-independent genes.


2004 ◽  
Vol 3 (6) ◽  
pp. 1544-1556 ◽  
Author(s):  
Jade Mei-Yeh Lu ◽  
Robert J. Deschenes ◽  
Jan S. Fassler

ABSTRACT Yeast Sln1p is an osmotic stress sensor with histidine kinase activity. Modulation of Sln1 kinase activity in response to changes in the osmotic environment regulates the activity of the osmotic response mitogen-activated protein kinase pathway and the activity of the Skn7p transcription factor, both important for adaptation to changing osmotic stress conditions. Many aspects of Sln1 function, such as how kinase activity is regulated to allow a rapid response to the continually changing osmotic environment, are not understood. To gain insight into Sln1p function, we conducted a two-hybrid screen to identify interactors. Mog1p, a protein that interacts with the yeast Ran1 homolog, Gsp1p, was identified in this screen. The interaction with Mog1p was characterized in vitro, and its importance was assessed in vivo. mog1 mutants exhibit defects in SLN1-SKN7 signal transduction and mislocalization of the Skn7p transcription factor. The requirement for Mog1p in normal localization of Skn7p to the nucleus does not fully account for the mog1-related defects in SLN1-SKN7 signal transduction, raising the possibility that Mog1p may play a role in Skn7 binding and activation of osmotic response genes.


Sign in / Sign up

Export Citation Format

Share Document