Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment

Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2093-2098 ◽  
Author(s):  
Su Chu ◽  
Helen Xu ◽  
Neil P. Shah ◽  
David S. Snyder ◽  
Stephen J. Forman ◽  
...  

AbstractThe BCR-ABL kinase inhibitor imatinib mesylate induces complete cytogenetic response (CCR) in a high proportion of chronic myelogenous leukemia (CML) patients. However, patients in CCR usually demonstrate evidence of residual BCR-ABL–positive progenitors. The mechanisms underlying persistence of small numbers of malignant progenitors in imatinib-sensitive patients are unclear. BCR-ABL kinase domain mutations affecting drug binding can lead to secondary resistance to imatinib. We show here that kinase mutations could be detected in CD34+ cells isolated from CML patients in CCR on imatinib. Most mutations seen have not been reported in previous clinical studies. Interestingly, several of the involved amino acid positions have been implicated in an in vitro mutagenesis screen. These BCR-ABL mutations were associated with varying levels of imatinib resistance. Two of 5 patients in whom mutations were detected on initial evaluation have relapsed. In addition, 4 patients in whom mutations were not initially detected, but with rising BCR-ABL mRNA levels on quantitative polymerase chain reaction (Q-PCR) analysis, had mutations detected on follow-up evaluation. We conclude that BCR-ABL kinase mutations can be detected in CD34+ cells from CML patients in CCR on imatinib, may contribute to persistence of small populations of malignant progenitors, and could be a potential source of relapse.

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4611-4614 ◽  
Author(s):  
Amie S. Corbin ◽  
Paul La Rosée ◽  
Eric P. Stoffregen ◽  
Brian J. Druker ◽  
Michael W. Deininger

Abstract Imatinib mesylate is a selective Bcr-Abl kinase inhibitor, effective in the treatment of chronic myelogenous leukemia. Most patients in chronic phase maintain durable responses; however, many in blast crisis fail to respond, or relapse quickly. Kinase domain mutations are the most commonly identified mechanism associated with relapse. Many of these mutations decrease the sensitivity of the Abl kinase to imatinib, thus accounting for resistance to imatinib. The role of other mutations in the emergence of resistance has not been established. Using biochemical and cellular assays, we analyzed the sensitivity of several mutants (Met244Val, Phe311Leu, Phe317Leu, Glu355Gly, Phe359Val, Val379Ile, Leu387Met, and His396Pro/Arg) to imatinib mesylate to better understand their role in mediating resistance.While some Abl mutations lead to imatinib resistance, many others are significantly, and some fully, inhibited. This study highlights the need for biochemical and biologic characterization, before a resistant phenotype can be ascribed to a mutant.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1087-1087 ◽  
Author(s):  
Nicholas J. Donato ◽  
Ji Wu ◽  
Ling-Yuan Kong ◽  
Feng Meng ◽  
Francis Lee ◽  
...  

Abstract BCR-ABL is an unregulated tyrosine kinase expressed as a consequence of a reciprocal chromosomal translocation that is common in chronic myelogenous and acute lymphocytic leukemia. BCR-ABL induces transformation of hematopoetic stem cells through tyrosine phosphorylation of multiple substrates. The src-family kinases (SFKs), Lyn and Hck, are highly activated by BCR-ABL in leukemic cells and recent studies suggest that they are substrates and essential mediators of BCR-ABL signal transduction and transformation. In cells selected for resistance to the BCR-ABL inhibitor, imatinib mesylate, Lyn kinase is overexpressed and its activation is not dependent on or regulated by BCR-ABL, suggesting that autonomous regulation of SFKs may play a role in imatinib resistant. In this report, activation of Lyn and Hck was compared in CML specimens derived from imatinib responsive and resistant patients that did not express a mutant BCR-ABL protein as their primary mediator of resistance. In imatinib sensitive cell lines and specimens derived from imatinib responsive CML patients imatinib effectively reduced activation of both BCR-ABL and SFKs. However, in multiple specimens from resistant patients, imatinib reduced BCR-ABL kinase activation but failed to reduce SFK activation. The dual ABL/SRC inhibitor, BMS-354825, blocked activation of both BCR-ABL and SFKs expressed in leukemic cells and correlated with clinical responsiveness to this agent. Animal models demonstrated that loss of imatinib-mediated inhibition of Lyn kinase activation significantly impaired its anti-tumor activity which was recovered by treatment with BMS-354825. Direct silencing of Lyn or Hck reduced CML cell survival in imatinib resistant patient specimens and cell models, suggesting a direct role for these kinases in cell survival. Our results show that SFK activation is mediated by BCR-ABL in imatinib responsive cells but these kinases escape control by BCR-ABL in CML patients that develop imatinib resistance in the absence of BCR-ABL point mutations. This form of resistance can effectively be overcome by BMS-354825 through its dual SRC and ABL kinase inhibitory activities. Dual specificity kinase inhibitors may be indicated for the treatment and prevention of imatinib resistance in CML when it is associated with constitutively activated src-family kinases.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1666-1666
Author(s):  
Axel M Hillmer ◽  
King-Pan Ng ◽  
Charles Chuah ◽  
Wen Chun Juan ◽  
Tun-Kiat Ko ◽  
...  

Abstract Abstract 1666 The use of the tyrosine kinase inhibitor (TKI), imatinib (IM), to target the oncogenic BCR-ABL kinase has resulted in profound responses in patients with chronic phase (CP) chronic myelogenous leukemia (CML). However, a subset of patients do not respond to TKIs, and are deemed to have primary resistance. Importantly, patients with European LeukemiaNet (ELN)-defined ‘failure’ or ‘suboptimal response’ are at increased risk of poorer long-term outcomes. Little is known about mechanisms underlying primary resistance, where only a minority of patients have BCR-ABL kinase domain (KD) mutations. Interestingly, East-Asian CML patients are reported to have lower complete cytogenetic response rates compared to the West (∼50 vs 80% respectively, Au et al. 2009). We used massively parallel DNA sequencing of paired-end ditags to identify genetic factors associated with resistance in CML patient samples. We discovered a novel deletion polymorphism in the BIM gene that correlated with resistance, and which represented a common polymorphism in normal East-Asian (12.3% carriers), but not African or Caucasian (0%), populations (n=2465). BIM is a pro-apoptotic BCL2 family member, and plays a central role in CML pathophysiology. Here, BCR-ABL suppresses FoxO3a-mediated BIM transcription to maintain a survival advantage, while preventing BIM expression following BCR-ABL inhibition results in TKI resistance. Inspection of BIM gene structure suggested the polymorphism would result in mutually exclusive splicing of exon 3 (E3) vs 4 (E4), leading to decreased expression of BIM transcripts encoding the pro-apoptotic BH3 domain (found only in E4). To test this hypothesis, we constructed a minigene to measure E3 vs E4 splicing, and found the polymorphism decreased splicing to E4 over E3 by >5-fold. Importantly, primary CML cells exhibited the same phenomenon, since polymorphism-containing samples expressed lower levels of E4- vs E3-containing transcripts (p=0.008), while general BIM transcription was unaffected. Our observations suggested a novel mechanism for intrinsic TKI resistance. Here, upon IM exposure, polymorphism-containing CML cells would favor induction of E3- vs E4-containing BIM transcripts, decreased expression of BH3-containing BIM isoforms, and impaired apoptosis. To facilitate these studies, we identified a Japanese CML cell line, KCL22, which contained the polymorphism, and confirmed it had a decreased E4/E3 transcript ratio compared to cells without the polymorphism. KCL22 cells also had decreased induction of E4-containing transcripts following IM, as well as lower levels of BIMEL protein, a major BH3-containing BIM isoform. Consistent with prior reports, KCL22 cells were resistant to IM, despite effective BCR-ABL inhibition, and had impaired apoptotic signalling upon IM exposure. Importantly, and as predicted by our model, pharmacologic restoration of BH3 activity (using the BH3-mimetic drug, ABT-737) sensitized cells to IM-induced death. Next, we used zinc finger nuclease-facilitated gene targeting to precisely create the polymorphism in the BIM gene of IM-sensitive K562 CML cells. We generated subclones that were heterozygous or homozygous for the polymorphism, and confirmed a decreased E4/E3 ratio in these cells in a polymorphism-dosage-dependent manner. Polymorphism-containing cells exhibited decreased induction of E4-containing transcripts following IM exposure, as well as impaired upregulation of BIMEL protein, and diminished apoptotic cell death. As in KCL22 cells, ABT-737 enhanced the ability of IM to activate apoptosis in polymorphism-containing cells. Using an expanded East-Asian CML cohort (n=203), we found the polymorphism correlated with TKI resistance (defined as ‘failure’ or ‘suboptimal’ per ELN criteria) in CP patients treated with 400 mg IM daily (p=0.02). Further, patients with the polymorphism were more likely to have resistance in the absence of a KD mutation than those without (OR=2.24, 95% CI of 1.22–4.12). In sum, we have found an East-Asian polymorphism in BIM that is associated with intrinsic resistance to TKIs. Screening for this polymorphism may be useful in identifying patients at risk of TKI resistance; a resistance we show can be overcome by BH3 mimetics. Our findings may also apply to other cancers and proliferative disorders in which drug-sensitivity is BIM-dependent. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Michael J. Mauro

Resistance in chronic myelogenous leukemia is an issue that has developed in parallel to the availability of rationally designed small molecule tyrosine kinase inhibitors to treat the disease. A significant fraction of patients with clinical resistance are recognized to harbor point mutations/substitutions in the Abl kinase domain, which limit or preclude drug binding and activity. Recent data suggest that compound mutations may develop as well. Proper identification of clinical resistance and prudent screening for all causes of resistance, ranging from adherence to therapy to Abl kinase mutations, is crucial to success with kinase inhibitor therapy. There is currently an array of Abl kinase inhibitors with unique toxicity and activity profiles available, allowing for individualizing therapy beginning with initial choice at diagnosis and as well informed choice of subsequent therapy in the face of toxicity or resistance, with or without Abl kinase domain mutations. Recent studies continue to highlight the merits of increasingly aggressive initial therapy to subvert resistance and importance of early response to identify need for change in therapy. Proper knowledge and navigation amongst novel therapy options and consideration of drug toxicities, individual patient characteristics, disease response, and vigilance for development of resistance are necessary elements of optimized care for the patient with chronic myelogenous leukemia.


Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3167-3174 ◽  
Author(s):  
Su Chu ◽  
Melissa Holtz ◽  
Mamta Gupta ◽  
Ravi Bhatia

Abstract Chronic myelogenous leukemia (CML) results from malignant transformation of a primitive hematopoietic cell by the BCR/ABL oncogene. The breakpoint cluster region/ABL (BCR/ABL) tyrosine kinase inhibitor imatinib mesylate (imatinib) is highly effective in inducing remissions in CML. However, the effects of imatinib on intracellular signaling in primary progenitor cells are not well described. We show that imatinib exposure resulted in a significant dose-responsive reduction in BCR/ABL kinase activity in CML CD34+ cells. However, imatinib treatment resulted in an increase in activity of p42/44 mitogen-activated protein kinase (MAPK), an important downstream effector of BCR/ABL. Increased MAPK activity was growth factor dependent. Pharmacologic inhibition of MAPK using MAPK/extracellular signal–regulated kinase kinase–1/2 (MEK-1/2) inhibitors significantly reduced CML progenitor proliferation. Combined treatment with a MEK-1/2 inhibitor and imatinib significantly increased suppression of CML progenitors compared with either inhibitor alone. In contrast, imatinib treatment resulted in a small reduction in AKT activity. Combined treatment with a phosphatidylinositol-3 (PI-3) kinase inhibitor and imatinib significantly increased suppression of CML progenitor growth compared with either inhibitor alone. We conclude that inhibition of BCR/ABL kinase activity in CML progenitors by imatinib results in a growth factor-dependent compensatory increase in MAPK activity and in only partial inhibition of PI-3 kinase activity. These mechanisms may contribute to incomplete elimination of CML progenitors by imatinib. (Blood. 2004;103:3167-3174)


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1996-1996 ◽  
Author(s):  
Mohammad Azam ◽  
Valentina Nardi ◽  
William C. Shakespear ◽  
Robert R. Latek ◽  
Darren Veach ◽  
...  

Abstract The aberrant signaling behavior caused by the expression of BCR-ABL is necessary and sufficient to cause chronic myeloid leukemia (CML), an observation which paved the way for the development of imatinib (GleevecTM), a small molecule inhibitor of the BCR-ABL kinase. Enthusiasm for the remarkable efficacy of imatinib has been tempered by the development of clinical resistance. The most common mechanisms for resistance are the development of kinase domain mutations and/or overexpression of the BCR-ABL gene, with mutations in the kinase accounting for ~90 % of all cases. The resistance-conferring lesions are found in regions of the kinase that are critical to its autoregulation, such as P-loop, C-helix, gatekeeper area, activation loop and the SH2-C-lobe interface. Mechanistically, these mutations effect either a steric blockade or a change in the dynamic equilibrium that favors the active kinase conformation that precludes imatinib binding. We have analyzed two dual Src-Abl kinase inhibitors, AP23464 and PD166326, against 58 BCR-ABL kinase variants conferring imatinib resistance. PD166326 binds to the Abl kinase domain in the open although enzymatically inactive conformation, while AP23464 targets the active conformation. Both of these compounds have effectively suppressed the cell growth of imatinib resistance variants, except for a recurrent mutation in the gatekeeper residue (T315I). The P-loop variants are more sensitive to AP23464 than PD166326. Interestingly, the imatinib resistant variants from the C-helix, hinge region, activation loop and SH2-C-lobe region, are hypersensitive to both compounds, as compared to native BCR-ABL. The BCR-ABL variants in the C-helix, gatekeeper area, and the activation loop are more sensitive to AP23464 than PD166326, while variants from the hinge region and the SH2-C-lobe interface are hypersensitive to PD166326. Altogether, these results define a differential requirement for a specific ABL conformation for drug binding of AP23464 and PD166326. In order to better understand their structure activity relationships and the patterns of resistance, we carried out an in-vitro mutagenesis-screen using different concentration of the drug either alone or in combination with imatinib. AP23464 mediates 2–3 time less resistance than PD166326. A higher concentration of all three compounds suppresses all resistance mutations, save for the notable exceptions, T315I and F317L/VandC. Resistance conferring mutations selected at 10–20 fold higher IC50 values are different. AP23464 efficiently suppresses the mutations from the P-loop (except E255K) and two mutations from the activation loop, while PD166326 remains refractory to the mutations in the C-helix and SH2-C-lobe interface. In combination with imatinib, AP23464 and PD166326 suppressed the emergence of most resistance mutations, with the notable exception of T315I. These in-vitro studies demonstrate that the combination of two or three different conformation specific inhibitors is needed to suppress the emergence of resistance. We are characterizing variants of AP23464 that we predict will show activity against the most challenging imatinib resistance mutant T315I.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3821-3829 ◽  
Author(s):  
Ji Wu ◽  
Feng Meng ◽  
Henry Lu ◽  
Ling Kong ◽  
William Bornmann ◽  
...  

Abstract Lyn kinase functions as a regulator of imatinib sensitivity in chronic myelogenous leukemia (CML) cells through an unknown mechanism. In patients who fail imatinib therapy but have no detectable BCR-ABL kinase mutation, we detected persistently activated Lyn kinase. In imatinib-resistant CML cells and patients, Lyn activation is BCR-ABL independent, it is complexed with the Gab2 and c-Cbl adapter/scaffold proteins, and it mediates persistent Gab2 and BCR-ABL tyrosine phosphorylation in the presence or absence of imatinib. Lyn silencing or inhibition is necessary to suppress Gab2 and BCR-ABL phosphorylation and to recover imatinib activity. Lyn also negatively regulates c-Cbl stability, whereas c-Cbl tyrosine phosphorylation is mediated by BCR-ABL. These results suggest that Lyn exists as a component of the BCR-ABL signaling complex and, in cells with high Lyn expression or activation, BCR-ABL kinase inhibition alone (imatinib) is not sufficient to fully disengage BCR-ABL–mediated signaling and suggests that BCR-ABL and Lyn kinase inhibition are needed to prevent or treat this form of imatinib resistance.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4701-4707 ◽  
Author(s):  
Ravi Bhatia ◽  
Melissa Holtz ◽  
Ning Niu ◽  
Rachel Gray ◽  
David S. Snyder ◽  
...  

AbstractThe BCR/ABL tyrosine kinase inhibitor imatinib mesylate (Gleevec, STI571; Novartis, Basel, Switzerland) has shown remarkable efficacy in the treatment of chronic myelogenous leukemia (CML), with a high proportion of patients achieving complete cytogenetic responses (CCRs). However, it is not clear whether remissions will be durable and whether imatinib mesylate can eliminate the malignant primitive progenitors in which the disease arises. We investigated whether residual BCR/ABL+ hematopoietic progenitors were present in patients who achieved CCRs with imatinib mesylate treatment. CD34+ progenitor cells were selected from bone marrow mononuclear cells (MNCs) and analyzed for the presence of the BCR/ABL fusion gene by fluorescence in situ hybridization (FISH). CD34+ cells were also plated in committed progenitor (colony-forming cell, or CFC) and primitive progenitor (long-term bone marrow culture-initiating cell, or LTCIC) cultures and resulting colonies analyzed for the presence of BCR/ABL+ cells by FISH. Using these assays, residual BCR/ABL+ progenitors were detected in all patients studied. Quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) analysis demonstrated increased levels of BCR/ABL mRNA in CD34+ cells compared with total MNCs. Evaluation of samples collected at different time points demonstrated persistence of BCR/ABL+ progenitors despite continued treatment with imatinib mesylate. Our results indicate that inhibition of BCR/ABL tyrosine kinase activity by imatinib mesylate does not eliminate malignant primitive progenitors in CML patients. Patients in CCR with imatinib mesylate treatment need to be followed carefully to assess for risk of relapse.


Sign in / Sign up

Export Citation Format

Share Document