Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2123-2130 ◽  
Author(s):  
Richard P. G. Hayhoe ◽  
Ahmad M. Kamal ◽  
Egle Solito ◽  
Roderick J. Flower ◽  
Dianne Cooper ◽  
...  

We have tested the effects of annexin 1 (ANXA1) and its N-terminal peptide Ac2-26 on polymorphonuclear leukocyte (PMN) recruitment under flow. Differential effects of the full-length protein and its peptide were observed; ANXA1 inhibited firm adhesion of human PMNs, while Ac2-26 significantly attenuated capture and rolling without effect on firm adhesion. Analysis of the effects of ANXA1 and Ac2-26 on PMN adhesion molecule expression supported the flow chamber results, with Ac2-26 but not ANXA1 causing l-selectin and PSGL-1 shedding. ANXA1 and its peptide act via the FPR family of receptors. This was corroborated using HEK-293 cells transfected with FPR or FPRL-1/ALX (the 2 members of this family expressed by human PMNs). While Ac2-26 bound both FPR and FPRL-1/ALX, ANXA1 bound FPRL-1/ALX only. ANXA1 and Ac2-26 acted as genuine agonists; Ac2-26 binding led to ERK activation in both FPR- and FPRL-1/ALX-transfected cells, while ANXA1 caused ERK activation only in cells transfected with FPRL-1/ALX. Finally, blockade of FPRL-1/ALX with a neutralizing monoclonal antibody was found to abrogate the effects of ANXA1 in the flow chamber but was without effect on Ac2-26-mediated inhibition of rolling. These findings demonstrate for the first time distinct mechanisms of action for ANXA1 and its N-terminal peptide Ac2-26.

2018 ◽  
Vol 293 (44) ◽  
pp. 16984-16993 ◽  
Author(s):  
Antje Cordshagen ◽  
Wiebke Busch ◽  
Michael Winklhofer ◽  
Hans Gerd Nothwang ◽  
Anna-Maria Hartmann

The pivotal role of K+-Cl− cotransporter 2 (KCC2) in inhibitory neurotransmission and severe human diseases fosters interest in understanding posttranslational regulatory mechanisms such as (de)phosphorylation. Here, the regulatory role of the five bona fide phosphosites Ser31, Thr34, Ser932, Thr999, and Thr1008 was investigated by the use of alanine and aspartate mutants. Tl+-based flux analyses in HEK-293 cells demonstrated increased transport activity for S932D (mimicking phosphorylation) and T1008A (mimicking dephosphorylation), albeit to a different extent. Increased activity was due to changes in intrinsic activity, as it was not caused by increased cell-surface abundance. Substitutions of Ser31, Thr34, or Thr999 had no effect. Additionally, we show that the indirect actions of the known KCC2 activators staurosporine and N-ethylmaleimide (NEM) involved multiple phosphosites. S31D, T34A, S932A/D, T999A, or T1008A/D abrogated staurosporine mediated stimulation, and S31A, T34D, or S932D abolished NEM-mediated stimulation. This demonstrates for the first time differential effects of staurosporine and NEM on KCC2. In addition, the staurosporine-mediated effects involved both KCC2 phosphorylation and dephosphorylation with Ser932 and Thr1008 being bona fide target sites. In summary, our data reveal a complex phosphoregulation of KCC2 that provides the transporter with a toolbox for graded activity and integration of different signaling pathways.


2007 ◽  
Vol 292 (3) ◽  
pp. F1028-F1034 ◽  
Author(s):  
W. Bruce Sneddon ◽  
Yanmei Yang ◽  
Jianming Ba ◽  
Lisa M. Harinstein ◽  
Peter A. Friedman

The PTH receptor (PTH1R) activates multiple signaling pathways, including extracellular signal-regulated kinases 1 and 2 (ERK1/2). The role of epidermal growth factor receptor (EGFR) transactivation in ERK1/2 activation by PTH in distal kidney cells, a primary site of PTH action, was characterized. ERK1/2 phosphorylation was stimulated by PTH and blocked by the EGFR inhibitor, AG1478. Upon PTH stimulation, metalloprotease cleavage of membrane-bound heparin-binding fragment (HB-EGF) induced EGFR transactivation of ERK. Conditioned media from PTH-treated distal kidney cells activated ERK in HEK-293 cells. AG1478 added to HEK-293 cells ablated transactivation by conditioned media. HB-EGF directly activated ERK1/2 in HEK-293 cells. Pretreatment of distal kidney cells with the metalloprotease inhibitor GM-6001 abolished transactivation of ERK1/2 by PTH. The role of the PTH1R COOH terminus in PTX-sensitive ERK1/2 activation was characterized in HEK-293 cells transfected with wild-type PTH1R, with a PTH1R mutated at its COOH terminus, or with PTH1R truncated at position 480. PTH stimulated ERK by wild-type, mutated and truncated PTH1Rs 21-, 27- and 57-fold, respectively. Thus, the PTH1R COOH terminus exerts an inhibitory effect on ERK activation. EBP50, a scaffolding protein that binds to the PDZ recognition domain of the PTH1R, impaired PTH but not isoproterenol or calcitonin-induced ERK activation. Pertussis toxin inhibited PTH-stimulated ERK1/2 by mutated and truncated PTH1Rs and abolished ERK1/2 activation by wild-type PTH1R. We conclude that ERK phosphorylation in distal kidney cells by PTH requires PTH1R activation of Gi, which leads to stimulation of metalloprotease-mediated cleavage of HB-EGF and transactivation of the EGFR and is regulated by EBP50.


2004 ◽  
Vol 378 (3) ◽  
pp. 975-982 ◽  
Author(s):  
James MWANJEWE ◽  
Ashok K. GROVER

Cells take up transferrin-bound iron or NTBI (non-transferrin-bound iron). After treatment with NGF (nerve growth factor), PC12 cells exhibited a neuronal phenotype and an increase in the NTBI uptake (55Fe2+ or 55Fe3+). We loaded the cells with the dye calcein, whose fluorescence increases in the presence of Ca2+ but is quenched with Fe2+ or Fe3+. When examined using calcein fluorescence or radioactive iron, DAG (diacylglycerol)-stimulated NTBI entry was more in NGF-treated PC12 cells compared with untreated cells. All experiments were performed at 1.5 mM extracellular Ca2+. Nramp2 (natural-resistance-associated macrophage protein 2) mRNA expression did not change after the NGF treatment. Expression of the bivalent cation entry protein TRPC6 (transient receptor potential canonical 6) was detected only in the NGF-treated cells. To verify that increased NTBI uptake depended on TRPC6, we examined whether transfecting HEK-293 (human embryonic kidney 293) cells with TRPC6 also increased the NTBI (55Fe) uptake. We also cotransfected HEK-293 cells with two plasmids, one expressing TRPC6 and the other expressing the fluorescent protein DsRED2 to identify the transfected cells. Challenging the calcein-loaded HEK-293 cells (which intrinsically express the α1-adrenergic receptors) with phenylephrine or a cell-permeant DAG increased the fluorescence signal more rapidly in transfected cells compared with untransfected cells. However, when iron (Fe2+ and Fe3+) was added before adding phenylephrine or DAG, the fluorescence intensity decreased more rapidly in transfected cells compared with untransfected cells, thereby indicating a greater stimulation of the NTBI uptake in cells expressing TRPC6. We postulate that the increase in the NTBI entry into neuronal PC12 cells is through TRPC6, a pathway that is unique since it is receptor-stimulated. Since neuronal cells express TRPC6, this pathway may have a role in neurotoxicity.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1495-1495
Author(s):  
Jie Yin ◽  
Zhenni Ma ◽  
Jian Su ◽  
Xiaojuan Zhao ◽  
Zhaoyue Wang ◽  
...  

Abstract Gene mutations play an important role in the pathogenesis of von Willebrand disease (VWD), resulting in the qualitative defect or quantitative deficit of von Willebrand factor (VWF). VWF propeptide is composed of D1 and D2 domain, which acts as a covalent oxidoreductase in the multimerization. In addition, the propeptide is necessary for the transport from endoplasmic reticulum (ER) to Golgi-apparatus, basal secretion and regulated secretion of VWF. However, the mechanisms of the mutation in D1 domain impairing VWF multimerization and causing low VWF levels in patients remain unknown. Herein we identified four mutations in the D1 domain from VWD patients, and assessed the effect of these mutations on the function of propeptide. We identified p.G39R, p.D141N, p.K157E, and p.C379G in three VWD patients. To characterize the roles of four mutations in propeptide-depend multimerization, we generated several truncated-VWFs, D1D2D¡¯D3 (residues 1-1241), including G39R, K157E, D141N, C379G and wide type (WT). These constructs were then expressed in HEK 293 cells, and were evaluated the D¡¯D3-dimer formation of mutations and WT. Full-length VWF comprising mutations and WT were also restructured and were transfected in HEK 293 cells. We then analyzed the VWF multimer distribution and VWF antigen in the cell supernatant and cell lysate. We also assessed VWF retention in ER and the stimulation secretion by phorbol-12-myristate-13- acetate (PMA) of mutations and those of WT. Two type 3 and 1 type 1 patients were enrolled in our study. VWF antigen were 3, 1 and 8 IU/dL, and VWF:Rco were 2.1, 2.3 and 5.6 IU/dL respectively in three patients. VWF multimer distribution exhibited none in two type 3 patients and normal-like multimer pattern in the type 1. Sequence analysis of VWF gene showed two heterozygous mutations (p.G39R and D141N) in D1 domain of one type 3 patient, and a heterozygous K157E in propeptide and a heterozygous C1165R in D3 domain of the other patient with type 3. Type 1 patients had a heterozygous C379G mutation. Among these four mutations in D1 domain, p.G39R, p.K157E, and p.C379G were novel. In the supernatant of transfected cell, dimerization of D¡¯D3 was absent in truncated-G39R. Compared with that of truncated-WT, decreased but detectable dimerizations were detected in K157E, D141N, and C379G. Similar results were also observed in multimerization of full-length constructs. The multimer assembly was too low to visualize in G39R, whereas decreased medium and absent large VWF multimers were seen in K157E, D141N, and C379G. By immunofluorescence imaging, all full-length VWF variants were detained in ER in different degrees (fig 1). The basal secretions of G39R, K157E, D141N, and C379G were (2.7¡À0. 3)%, (2.5¡À0.2)%, (26.0¡À4.1)%, and (22.4¡À3.8)% of WT respectively. However, VWF antigens in the lysate of transfected cells were (116.5¡À5.4)%, (90.9¡À3.0)%, (91.7¡À0.4)% and (113.8¡À2.9)% of WT for G39R, K157E, D141N, and C379G. No detectable secretion increases of mutant VWF induced by PMA were observed in the transfected cells, while WT-VWF with PMA exhibited increased secretion from 0.69% to 1.66%. These four mutations in D1 domain downgraded the activity of propeptide as the covalent oxidoreductase, and impaired the muiltimeriztion induced by propeptide. They also interfered with VWF transport from ER to Golgi-apparatus and caused the VWF retentions in ER. Therefore, they further reduced the basal secretion and regulated secretion of mature VWF, which could explain the possible pathogenesis of quantitative deficit of VWF in VWD. Disclosures No relevant conflicts of interest to declare.


2004 ◽  
Vol 286 (6) ◽  
pp. C1423-C1433 ◽  
Author(s):  
Frederick B. Loiselle ◽  
Patricio E. Morgan ◽  
Bernardo V. Alvarez ◽  
Joseph R. Casey

Human NBC3 is an electroneutral Na+/HCO3− cotransporter expressed in heart, skeletal muscle, and kidney in which it plays an important role in HCO3− metabolism. Cytosolic enzyme carbonic anhydrase II (CAII) catalyzes the reaction CO2 + H2O ⇆ HCO3− + H+ in many tissues. We investigated whether NBC3, like some Cl−/HCO3− exchange proteins, could bind CAII and whether PKA could regulate NBC3 activity through modulation of CAII binding. CAII bound the COOH-terminal domain of NBC3 (NBC3Ct) with Kd = 101 nM; the interaction was stronger at acid pH. Cotransfection of HEK-293 cells with NBC3 and CAII recruited CAII to the plasma membrane. Mutagenesis of consensus CAII binding sites revealed that the D1135-D1136 region of NBC3 is essential for CAII/NBC3 interaction and for optimal function, because the NBC3 D1135N/D1136N retained only 29 ± 22% of wild-type activity. Coexpression of the functionally dominant-negative CAII mutant V143Y with NBC3 or addition of 100 μM 8-bromoadenosine to NBC3 transfected cells reduced intracellular pH (pHi) recovery rate by 31 ± 3, or 38 ± 7%, respectively, relative to untreated NBC3 transfected cells. The effects were additive, together decreasing the pHi recovery rate by 69 ± 12%, suggesting that PKA reduces transport activity by a mechanism independently of CAII. Measurements of PKA-dependent phosphorylation by mass spectroscopy and labeling with [γ-32P]ATP showed that NBC3Ct was not a PKA substrate. These results demonstrate that NBC3 and CAII interact to maximize the HCO3− transport rate. Although PKA decreased NBC3 transport activity, it did so independently of the NBC3/CAII interaction and did not involve phosphorylation of NBC3Ct.


1998 ◽  
Vol 79 (2) ◽  
pp. 555-566 ◽  
Author(s):  
Stefano Vicini ◽  
Jian Feng Wang ◽  
Jin Hong Li ◽  
Wei Jian Zhu ◽  
Yue Hua Wang ◽  
...  

Vicini, Stefano, Jian Feng Wang, Jin Hong Li, Wei Jian Zhu, Yue Hua Wang, Jian Hong Luo, Barry B. Wolfe, and Dennis R. Grayson. Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J. Neurophysiol. 79: 555–566, 1998. N-methyl-d-aspartic acid (NMDA) receptors transiently transfected into mammalian HEK-293 cells were characterized with subunit-specific antibodies and electrophysiological recordings. Deactivation time course recorded in response to fastl-glutamate pulses were studied in isolated and lifted cells, as well as in outside-out membrane patches excised from cells expressing recombinant NR1 subunits in combination with the NR2A, NR2B, NR2C, or NR2D NMDA receptor subunits. Transfected cells were preidentified by the fluorescence emitted from the coexpressed Aequorea victoria jellyfish Green Lantern protein. Currents generated by NR1/NR2A channels displayed double exponential deactivation time course being faster than that in NR1/NR2B or NR1/NR2C channels. However, a large decay variability was observed within each cotransfection, suggesting that mechanisms additional to subunit composition may also regulate deactivation time course. NR1/NR2D channels displayed slowly deactivating currents. Channel deactivation was fast and comparable among receptors obtained by cotransfecting five distinct spliced variants of the NR1 subunit, each with the NR2A subunit. Additionally, recovery from desensitization was slower for NR1/NR2B than for NR1/NR2A channels. The average deactivation time course of responses to brief l-glutamate applications in cells where NR1/NR2A/NR2B cDNAs were cotransfected at variable ratio was intermediate between those of the NR1/NR2A and NR1/NR2B channels. Although immunocytochemical evidence indicates that the majority of cells are cotransfected by all plasmids in triple transfection, our experimental condition did not allow for a tight control of the expression of NMDA receptor subunits. This produced the result that many cells were characterized by deactivation time course and haloperidol sensitivities of separate NR1/NR2A and NR1/NR2B subunit heteromers. We also speculate on the possible formation of channels resulting from the coassembly in the same receptor of NR1/NR2A/NR2B subunits from a minority of cells that gave responses to brief application of l-glutamate characterized by slow deactivation time course and decreased haloperidol sensitivity.


2006 ◽  
Vol 395 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Saoussen Dally ◽  
Raymonde Bredoux ◽  
Elisabeth Corvazier ◽  
Jens P. Andersen ◽  
Johannes D. Clausen ◽  
...  

We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676–684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166±26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.


2009 ◽  
Vol 296 (5) ◽  
pp. C1105-C1114 ◽  
Author(s):  
P. Charukeshi Chandrasekera ◽  
Margaret E. Kargacin ◽  
Julie P. Deans ◽  
Jonathan Lytton

The sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) play a crucial role in regulating free cytosolic Ca2+ concentration in diverse cell types. It has been shown that recombinant SERCA3, when measured in heterologous systems, exhibits low apparent affinity for Ca2+; however, Ca2+ affinity of native SERCA3 in an endogenous setting has not been examined. Such a measurement is complicated, because SERCA3 is always coexpressed with the housekeeping isoform SERCA2b. We used a fluorescence-based assay for monitoring continuous Ca2+ uptake into microsomes to examine the properties of endogenous human SERCA3 and SERCA2b. The kinetic parameters were derived using a cooperative two-component uptake model for Ca2+ activation, and the values assigned to SERCA3 were confirmed using the highly specific human SERCA3 inhibitory antibody PL/IM430. First, using recombinant human SERCA3 and SERCA2b proteins transiently expressed in HEK-293 cells, we confirmed the previously observed low apparent Ca2+ affinity for SERCA3 compared with SERCA2b (1.10 ± 0.04 vs. 0.26 ± 0.01 μM), and using mixtures of recombinant protein isoforms, we validated the two-component uptake model. Then we determined apparent Ca2+ affinity for SERCA proteins present endogenously in cultured Jurkat T lymphocytes and freshly isolated human tonsil lymphocytes. The apparent Ca2+ affinity in these two preparations was 1.04 ± 0.07 and 1.1 ± 0.2 μM for SERCA3 and 0.27 ± 0.02 and 0.26 ± 0.01 μM for SERCA2b, respectively. Our data demonstrate, for the first time, that affinity for Ca2+ is inherently lower for SERCA3 expressed in situ than for other SERCA isoforms.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 840-845 ◽  
Author(s):  
O. M. Zack Howard ◽  
Hui Fang Dong ◽  
Aiko-Konno Shirakawa ◽  
Joost J. Oppenheim

Liver-expressed chemokine (LEC) is an unusually large CC chemokine, which is also known as LMC, HCC-4, NCC-4, and CCL16. Previously, LEC was shown to induce leukocyte migration but the responsible signaling receptors were not characterized. We report chemotaxis and competitive binding studies that show LEC binds to and activates CCR1 and CCR8 transfected HEK-293 cells. LEC induced maximal migration of CCR1 and CCR8 transfected cells at 89.3 nmol/L and cell adhesion at 5.6 nmol/L. The molar concentration of LEC required to induce maximum cell migration is 20- to 200-fold greater than that required for RANTES or I309, respectively. All 3 chemokines induced maximal static adhesion at 5 to 7 nmol/L. A neutralizing polyclonal antibody to LEC was developed to demonstrate that the unusually high concentration of LEC required to induce chemotaxis was a property of LEC and not as a result of an irrelevant protein contamination. This study suggests that LEC may be a more effective inducer of cell adhesion than cell migration.


2006 ◽  
Vol 290 (6) ◽  
pp. C1543-C1551 ◽  
Author(s):  
Sarah L. Davies ◽  
Claire E. Gibbons ◽  
Thomas Vizard ◽  
Donald T. Ward

The Ca2+-sensing receptor (CaR) is a pleiotropic, type III G protein-coupled receptor (GPCR) that associates functionally with the cytoskeletal protein filamin. To investigate the effect of CaR signaling on the cytoskeleton, human embryonic kidney (HEK)-293 cells stably transfected with CaR (CaR-HEK) were incubated with CaR agonists in serum-free medium for up to 3 h. Addition of the calcimimetic NPS R-467 or exposure to high extracellular Ca2+ or Mg2+ levels elicited actin stress fiber assembly and process retraction in otherwise stellate cells. These responses were ablated by cotreatment with the calcilytic NPS 89636 and were absent in vector-transfected HEK-293 cells. Cotreatment with the Rho kinase inhibitors Y-27632 and H1152 attenuated the CaR-induced morphological change but not intracellular Ca2+ (Cai2+) mobilization or ERK activation, although transfection with a dominant-negative RhoA-binding protein also inhibited calcimimetic-induced actin stress fiber assembly. CaR effects on morphology were unaffected by inhibition of Gq/11 or Gi/o signaling, epidermal growth factor receptor, or the metalloproteinases. In contrast, CaR-induced cytoskeletal changes were not induced by the aromatic amino acids, treatments that also failed to potentiate CaR-induced ERK activation despite inducing Cai2+ mobilization. Together, these data establish that CaR can elicit Rho-mediated changes in stress fiber assembly and cell morphology, which could contribute to the receptor's physiological actions. In addition, this study provides further evidence that aromatic amino acids elicit differential signaling from other CaR agonists.


Sign in / Sign up

Export Citation Format

Share Document