scholarly journals IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo

Blood ◽  
2006 ◽  
Vol 108 (5) ◽  
pp. 1571-1579 ◽  
Author(s):  
Emmanuel Zorn ◽  
Erik A. Nelson ◽  
Mehrdad Mohseni ◽  
Fabrice Porcheray ◽  
Haesook Kim ◽  
...  

IL-2 plays a critical role in the maintenance of CD4+CD25+ FOXP3+ regulatory T cells (Tregs) in vivo. We examined the effects of IL-2 signaling in human Tregs. In vitro, IL-2 selectively up-regulated the expression of FOXP3 in purified CD4+CD25+ T cells but not in CD4+CD25- cells. This regulation involved the binding of STAT3 and STAT5 proteins to a highly conserved STAT-binding site located in the first intron of the FOXP3 gene. We also examined the effects of low-dose IL-2 treatment in 12 patients with metastatic cancer and 9 patients with chronic myelogenous leukemia after allogeneic hematopoietic stem cell transplantation. Overall, IL-2 treatment resulted in a 1.9 median fold increase in the frequency of CD4+CD25+ cells in peripheral blood as well as a 9.7 median fold increase in FOXP3 expression in CD3+ T cells. CD56+CD3- natural killer (NK) cells also expanded during IL-2 therapy but did not express FOXP3. In vitro treatment of NK cells with 5-aza-2′-deoxycytidine restored the IL-2 signaling pathway leading to FOXP3 expression, suggesting that this gene was constitutively repressed by DNA methylation in these cells. Our findings support the clinical evaluation of low-dose IL-2 to selectively modulate CD4+CD25+ Tregs and increase expression of FOXP3 in vivo.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1257-1257
Author(s):  
Emmanuel Zorn ◽  
Erik A. Nelson ◽  
Mehrdad Mohseni ◽  
Despina Litsa ◽  
Haesook Kim ◽  
...  

Abstract Recombinant IL-2 has been used extensively in clinical trials to enhance a wide range of immune responses. Overall this strategy has had limited efficacy. Recent evidence suggests that IL-2 plays a key role in the generation and maintenance of CD4+CD25+ regulatory T cells (Treg) in vivo. In our study, we investigated the effect of prolonged administration of recombinant IL-2 on Treg in vivo. In a retrospective analysis, we first examined CD4+CD25+ Treg in blood samples collected from 21 cancer patients before and after they started continuous treatment with IL-2 at a dose of 2 X 105 U/m2/day for 3 months. Nine patients received IL-2 beginning 3 months after CD6 T cell depleted allogeneic bone marrow transplantation (BMT) for CML. The remaining 12 patients received IL-2 as treatment for advanced solid tumors. Overall toxicity was minimal and none of the transplant patients developed GVHD following IL-2 administration. Previous reports demonstrated that this prolonged treatment with low-dose IL-2 resulted in the expansion of CD56+CD3− NK cells in peripheral blood. Further analysis showed that 15 patients exhibited an expansion of Treg in peripheral blood 26 to 77 days after beginning IL-2 as demonstrated by an increase in the CD4+CD25+/CD3+ ratio (median fold increase 2.68; range 1.3 to 59). Three patients had no significant change and 3 patients demonstrated a decreased Treg/CD3 ratio. Using RNA from the same samples we also measured the expression of the Treg specific transcription factor FOXP3 by quantitative PCR. Nineteen of 21 patients showed a marked increase in FOXP3 expression following IL-2 treatment (8.38 median fold increase; range 1.4 to 41.5). Only 2 of 21 patients had lower FOXP3 expression after IL-2 administration. Since IL-2 treatment resulted in the expansion of NK cells as well as Treg, we purified CD56+CD3− NK cells and CD4+ T cells from patient samples collected post-IL-2 treatment, and measured FOXP3 gene expression in both subsets. In 4 analyzed cases, FOXP3 was selectively expressed in CD4+ T cells. Further analysis of purified Treg and NK cells incubated with IL-2 in vitro confirmed that FOXP3 expression was selectively induced in Treg, and also suggested that the in vivo increase in FOXP3 expression resulted from both Treg expansion and up-regulation of gene expression at the single cell level. To study the duration of the IL-2 effect, we analyzed additional samples collected 2 to 8 months after IL-2 treatment was completed. Nine of 10 patient samples tested showed a decrease in the CD4+CD25+/CD3+ ratio (1.39 median fold decrease; range 1.13 to 15.02). Using quantitative PCR, expression of FOXP3 decreased for 6 of 8 patients tested (10.76 median fold decrease; range 1.22 to 88.31). These results indicate that prolonged administration of IL-2 promotes the expansion of CD4+CD25+ Treg in vivo and also has a direct effect on FOXP3 expression. Although administration of IL-2 has previously been used to enhance T and NK cell responses, this study demonstrates that IL-2 therapy predominantly reinforces the regulatory component of the immune response, and may provide a means for controlling immune reactions in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2136-2136
Author(s):  
Emmanuel Zorn ◽  
Despina Lista ◽  
Haesook Kim ◽  
Roberto Bellucci ◽  
Christine Canning ◽  
...  

Abstract Regulatory T cells (Treg) play a key role in controlling immune responses following allogeneic hematopoietic stem cell transplantation (HSCT). In murine models, infusion of purified CD4+CD25+ Treg at the time of transplant is sufficient to prevent acute GVHD. In humans, development of acute as well as chronic GVHD has been associated with reduced numbers of Treg following allogeneic HSCT, suggesting that defective reconstitution of this functional cell type can contribute to exacerbation of alloimmune responses. Based on these results, adoptive cellular therapy using purified and in vitro expanded populations of Treg has been proposed as a therapeutic strategy to correct chronic GVHD. Treg are mainly characterized by the constitutive expression of the IL-2 receptor ? chain, CD25 and proliferate in response to IL-2 in vitro. In vivo, the effects of IL-2 on Treg populations are unknown. To examine this question we quantified changes in Treg in 9 patients with CML who previously received low dose IL-2 following allogeneic HSCT. Patients enrolled in this protocol received a daily intravenous infusion of 2 X 105 U IL-2/m2 for 3 months, starting 3 months after CD6 depleted allogeneic bone marrow transplantation (BMT). No patient developed GVHD following IL-2 administration and overall toxicity was minimal. The predominant immunologic effect of IL-2 reported in the initial study was a marked increase in NK cell populations characterized as CD3-CD16+CD56+ as well as total CD56+ cells. In this retrospective analysis we investigated populations of CD4+CD25+ T cells before and 1 to 2 months after the beginning IL-2 treatment. Using RNA extracted from patient PBMC we also assessed the level of expression of the specific transcription factor FOXP3 by quantitative PCR as an alternate marker of Treg in vivo. As initially reported, all 9 patients showed a marked increase in CD3-CD56+ cells 1 to 2 months post IL-2 administration. In contrast, the percent of CD3+ T cells were either unchanged or slightly decreased. The percent of CD4+CD25+ cells within the CD3+ T cell population increased during IL-2 treatment (median: 5.8 pre IL-2 vs 7.6 post IL-2, p-value=0.02). Likewise, FOXP3 expression in the CD3+ population showed 5 to 19 fold increase in 8 of 9 patients during this period (median: 3817 AU pre IL-2 vs. 18924 AU post IL-2, p-value=0.055). These results indicate that administration of low dose IL-2 can augment Treg cells in vivo as reflected by increased ratio of CD4+CD25+/CD3+ T cells as well as higher levels of FOXP3 expression. These studies suggest that prolonged treatment with low dose IL-2 can effectively expand CD4+CD25+ Treg in vivo. This represents a novel strategy for expanding regulatory T cells in vivo and may be useful alone or in conjunction with adoptive cellular therapy with Treg.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4055-4055
Author(s):  
Sya N. Ukena ◽  
Sarvari Velaga ◽  
Goudeva Lilia ◽  
Philipp Ivanyi ◽  
Arnold Ganser ◽  
...  

Abstract Abstract 4055 Recent clinical studies demonstrate the high potency of human regulatory T cells (Tregs) to control graft-versus-host disease following hematopoietic stem cell transplantation (SCT). Isolation of Tregs after recombinant G-CSF induced mobilization of stem cells would simplify the design of clinical trials in allogeneic SCT. However, there is growing evidence that G-CSF also exerts profound immune modulatory effects in the adaptive immune system. Therefore, we analyzed Tregs isolated by FACS based cell sorting from stem cell donors before (n=8) and after (n=13) G-CSF administration regarding their phenotype, stability, functional and expansion properties. Absolute CD4+ T cell (3.2 fold increase of mean after G-CSF; p<0.05) and CD4+CD25hi Treg cell numbers (4.1 fold increase of mean after G-CSF; p<0.01) were significantly increased after G-CSF administration. Analysis of the Foxp3 TSDR demethylation level displays a stable Foxp3 phenotype of G-CSF encountered Tregs (mean value 97.1% vs. 95.0 % after G-CSF administration). Moreover, the CD4+CD25hi Tregs of G-CSF treated SC donors suppress the proliferation of effector T cells with no significant differences to Tregs isolated from healthy donors before G-CSF treatment (mean values 42.1% vs. 49.9% after G-CSF administration at a Treg/ T effector cell ratio of 1:1). In vitro expansion of Tregs isolated after G-CSF application with anti-CD3 and anti-CD28 dynabeads in the presence of interleukin-2 led to comparable cell numbers as for the stimulation of control Treg cells. However, differences could be detected for the thymic derived marker molecule CD31 and those associated with activation (LAP, CD69, CD62L) and migration (CxCR3) as detected by FACS analysis. Our results show no significant differences regarding suppressive function and stability of Tregs isolated from stem cell donors before and after G-CSF administration. These data support the application of G-CSF mobilized Tregs for clinical trials which in turn opens up new possibilities for the adoptive transfer of Tregs in HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (8) ◽  
pp. 2494-2505 ◽  
Author(s):  
Yiming Huang ◽  
Larry D. Bozulic ◽  
Thomas Miller ◽  
Hong Xu ◽  
Lala-Rukh Hussain ◽  
...  

Abstract CD8-positive/T-cell receptor–negative (CD8+/TCR−) graft facilitating cells (FCs) are a novel cell population in bone marrow that potently enhance engraftment of hemopoietic stem cells (HSCs). Previously, we showed that the CD11c+/B220+/CD11b− plasmacytoid-precursor dendritic cell (p-preDC) FC subpopulation plays a critical but nonredundant role in facilitation. In the present study, we investigated the mechanism of FC function. We report that FCs induce antigen-specific CD4+/CD25+/FoxP3+ regulatory T cells (Tregs) in vivo. The majority of chimeric Tregs were recipient derived. Chimeric Tregs harvested at ≥ 4 weeks after transplantation significantly enhanced engraftment of donor- and recipient-derived HSCs, but not third-party HSCs, in conditioned secondary recipients, demonstrating antigen specificity. Although Tregs were present 2 and 3 weeks after transplantation, they did not enhance engraftment. In contrast, week 5 and greater Tregs potently enhanced engraftment. The function of chimeric Tregs was directly correlated with the development of FoxP3 expression. Chimeric Tregs also induced significantly stronger suppression of T-cell proliferation to donor antigen in vitro. Removal of p-preDC FCs resulted in impaired engraftment of allogeneic HSCs and failure to produce chimeric Tregs, suggesting that the CD8α+ p-preDC subpopulation is critical in the mechanism of facilitation. These data suggest that FCs induce the production of antigen-specific Tregs in vivo, which potently enhance engraftment of allogeneic HSCs. FCs hold clinical potential because of their ability to remain tolerogenic in vivo.


2012 ◽  
Vol 209 (9) ◽  
pp. 1529-1535 ◽  
Author(s):  
Susan M. Schlenner ◽  
Benno Weigmann ◽  
Qingguo Ruan ◽  
Youhai Chen ◽  
Harald von Boehmer

Regulatory T cells (T reg cells) are essential for the prevention of autoimmunity throughout life. T reg cell development occurs intrathymically but a subset of T reg cells can also differentiate from naive T cells in the periphery. In vitro, Smad signaling facilitates conversion of naive T cells into T reg cells but results in unstable Foxp3 expression. The TGF-β–Smad response element in the foxp3 locus is located in the CNS1 region in close proximity to binding sites for transcription factors implicated in TCR and retinoic acid signaling. From in vitro experiments it was previously postulated that foxp3 transcription represents a hierarchical process of transcription factor binding in which Smad3 would play a central role in transcription initiation. However, in vitro conditions generate T reg cells that differ from T reg cells encountered in vivo. To address the relevance of Smad3 binding to the CNS1 enhancer in vivo, we generated mice that exclusively lack the Smad binding site (foxp3CNS1mut). We show that binding of Smad3 to the foxp3 enhancer is dispensable for T reg cell development in newborn and adult mice with the exception of the gut.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Sija Landman ◽  
Marjan Cruijsen ◽  
Paulo C. M. Urbano ◽  
Gerwin Huls ◽  
Piet E. J. van Erp ◽  
...  

Regulatory T cells (Treg) can show plasticity whereby FOXP3 expression, the master transcription factor for Treg suppressor function, is lost and proinflammatory cytokines are produced. Optimal FOXP3 expression strongly depends on hypomethylation of the FOXP3 gene. 5-Azacytidine (Aza) and its derivative 5-aza-2′-deoxycytidine (DAC) are DNA methyltransferase inhibitors (DNMTi) that are therapeutically used in hematological malignancies, which might be an attractive strategy to promote Treg stability. Previous in vitro research primarily focused on Treg induction by DAC from naïve conventional CD4+ T cells (Tconv). Here, we examined the in vitro effect of DAC on the stability and function of FACS-sorted human naturally occurring CD4+CD25high FOXP3+ Treg. We found that in vitro activation of Treg in the presence of DAC led to a significant inhibition of Treg proliferation, but not of Tconv. Although Treg activation in the presence of DAC led to increased IFNγ expression and induction of a Thelper-1 phenotype, the Treg maintained their suppressive capacity. DAC also induced a trend towards increased IL-10 expression. In vivo studies in patients with hematological malignancies that were treated with 5-azacytidine (Vidaza) supported the in vitro findings. In conclusion, despite its potential to increase IFNγ expression, DAC does preserve the suppressor phenotype of naturally occurring Treg.


2013 ◽  
Vol 210 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Wing-hong Kwan ◽  
William van der Touw ◽  
Estela Paz-Artal ◽  
Ming O. Li ◽  
Peter S. Heeger

Thymus-derived (natural) CD4+ FoxP3+ regulatory T cells (nT reg cells) are required for immune homeostasis and self-tolerance, but must be stringently controlled to permit expansion of protective immunity. Previous findings linking signals transmitted through T cell–expressed C5a receptor (C5aR) and C3a receptor (C3aR) to activation, differentiation, and expansion of conventional CD4+CD25− T cells (T conv cells), raised the possibility that C3aR/C5aR signaling on nT reg cells could physiologically modulate nT reg cell function and thereby further impact the induced strength of T cell immune responses. In this study, we demonstrate that nT reg cells express C3aR and C5aR, and that signaling through these receptors inhibits nT reg cell function. Genetic and pharmacological blockade of C3aR/C5aR signal transduction in nT reg cells augments in vitro and in vivo suppression, abrogates autoimmune colitis, and prolongs allogeneic skin graft survival. Mechanisms involve C3a/C5a-induced phosphorylation of AKT and, as a consequence, phosphorylation of the transcription factor Foxo1, which results in lowered nT reg cell Foxp3 expression. The documentation that C3a/C3aR and C5a/C5aR modulate nT reg cell function via controlling Foxp3 expression suggests targeting this pathway could be exploited to manipulate pathogenic or protective T cell responses.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 919-919 ◽  
Author(s):  
Masahiro Hirakawa ◽  
Tiago R Matos ◽  
John Koreth ◽  
Edouard Forcade ◽  
Jennifer Whangbo ◽  
...  

Abstract Introduction: CD4+ FoxP3+ CD25+ regulatory T cells (Treg) play a central role in the maintenance of immune tolerance and prevention of chronic graft-versus-host disease (cGVHD) after allogeneic stem cell transplantation (SCT). Treg constitutively express high-affinity interleukin-2 (IL-2) receptors and murine models have established that IL-2 is a critical homeostatic regulator of Treg in vivo. We previously reported that daily administration of low-dose IL-2 in patients with cGVHD induces selective expansion of Treg and NK cells and results in clinical improvement in approximately 50% of patients. However, the mechanisms responsible for these selective effects and the influence of IL-2 therapy on other lymphocytes have not been established due to the limited resolution of traditional cell analytic methods such as flow cytometry. Methods: Single cell mass cytometry (CyTOF) with a panel of 33 markers was used to simultaneously examine the phenotypic and functional effects of low-dose IL-2 on lymphocyte populations in vitro and in vivo. The analytic panel included 22 cell surface markers to identify distinct T, B and NK cell subsets and 11 intracellular markers to measure functional status and activation of specific signaling pathways. viSNE, a cytometry analysis tool, was used to visualize high-dimensional cytometry data on a two-dimensional map. Results: In unstimulated lymphocytes from healthy donors, constitutive expression of CD25 (IL-2Ra) at high levels was restricted to Treg and CD56bright NK cells. Central memory (CM) and effector memory (EM) subsets of conventional CD4 T cells (Tcon) and CM CD8 T cells expressed low levels of CD25. Within the Treg population, the highest expression of CD25 was closely associated with expression of Helios transcription factor. Helios+ Treg also express higher levels of FoxP3, HLA-DR and CD95 and lower levels of BCL2 compared to Helios- Treg. To examine responses to IL-2, we stimulated peripheral blood mononuclear cells (PBMC) from healthy donors with IL-2 for 15 min in vitro (Figure 1). At low IL-2 concentrations (1 to 10 IU/ml), pSTAT5 was preferentially activated in Treg. Notably, pSTAT5 activation was more robust in memory Treg than naïve Treg and in Helios+ Treg than Helios- Treg. In addition, we observed activation of pSTAT5 in CD56bright NK cells at low concentrations of IL-2 (10 IU/ml). Higher IL-2 concentrations (100-1000 IU/ml) were required to activate pSTAT5 in Tcon, CD8 T cells and CD56dim NK cells. At high IL-2 concentrations, pSTAT5 was activated in all Treg, NK, Tcon and CD8 subsets. To examine the response to IL-2 in vivo, we examined PBMC from 14 patients with chronic GVHD receiving daily low-dose IL-2 using the same CyTOF panel of markers. Without additional in vitro stimulation, pSTAT5 expression was increased preferentially in Helios+ Treg. Peak pSTAT5 expression occurred 1 week after starting IL-2 and decreased with continued IL-2 therapy. Similarly, increased expression of FoxP3, CD25, HLA-DR and Ki67 occurred primarily in Helios+ Treg with peak expression at 1 week. At later time points during IL-2 therapy, changes in Treg included increased expression of CD95, CTLA4, PD-1, BIM and BCL2. Although there was no activation of pSTAT5 in CD4 Tcon and CD8 T cells, expression of PD-1 increased in effector memory subsets of Tcon and CD8 T cells 1 week after starting IL-2 therapy. Selective expansion of CD56bright NK cells was also noted, with peak activation at 1 week. No other changes were noted in Tcon, CD8 T cells and B cells. All changes observed during IL-2 therapy returned to baseline levels 4 weeks after treatment was stopped. However, examination of PBMC from 8 patients who received continuous daily low-dose IL-2 therapy for approximately 1 year showed that all of the changes noted above persisted during extended therapy. Conclusion: Comprehensive analysis of T, B and NK cells from healthy donors revealed that low concentrations of IL-2 result in selective activation of Helios+ Treg and CD56bright NK cells. Higher concentrations of IL-2 are required for activation of CD4 Tcon, CD8 T cells and CD56dim NK cells. Identical populations are activated in patients with cGVHD receiving daily low-dose IL-2 and these functional effects persist during extended IL-2 therapy. Although the function of Helios transcription factor is not well defined, Helios expression identifies those Treg most primed to respond to low concentrations of IL-2 in vitro and in vivo. Disclosures Armand: Infinity Pharmaceuticals: Consultancy; Merck: Consultancy, Research Funding; Bristol-Myers Squibb: Research Funding. Antin:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Gentium S.p.A.: Membership on an entity's Board of Directors or advisory committees. Soiffer:Gentium SpA/Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4870-4870
Author(s):  
Dolores Mahmud ◽  
Sandeep Chunduri ◽  
Nadim Mahmud ◽  
Lennert Van Den Dries ◽  
John J. Maciejewski ◽  
...  

Abstract We have previously demonstrated that allogeneic blood T cells stimulate cord blood (CB) CD34+ cell differentiation into professional antigen presenting cells (APC) in-vitro and in-vivo (Abbasian J, Blood2006:108:203–208). In this study we immunomagnetically selected human CD4+CD25+ regulatory T cells (Tregs) and showed that >80% of these cells were positive for FoxP3 intracellular expression. Then we tested whether Tregs may affect CB CD34+ cell clonogenic activity in-vitro an in-vivo, and if co-incubation of Tregs and CD34+ cells may modify the phenotype and function of Tregs. A colony-forming cells (CFU-C) assay performed with CD34+ cells mixed with allogeneic Tregs at 1:2 ratio resulted in comparable numbers of Granulocyte- Macrophage CFU (CFU-GM), burst-forming unit-erythroid (BFU-E) and CFU-Mix as compared to cultures with CD34+ cells alone (p=0.2, p=0.5 and p=0.5, respectively)(n=3 exps). Human CD34+ cells were co-transplanted with human CD4+CD25+ allogeneic Tregs into NOD/SCID mice at 1:1 and 1:2 ratio. After 6 weeks mice marrow was harvested and showed a 1.3±1.1% (n=3 mice) and 1.6±0.8% (n=4 mice) engraftment of huCD45+ cells, respectively, which was comparable to the engraftment observed in control animals transplanted with CD34+ cells alone (1.4±0.4). In addition, among the engrafted huCD45+ cells similar proportion of CD33+ myeloid cells, CD14+ monocytes and CD1c+ dendritic cells were observed in the three groups of animals. Mixed lymphocyte culture (MLC) experiments showed that irradiated CD34+ cells stimulated brisk proliferative responses of CD4+CD25- cells (S:R=1:2), but did not induce any proliferation of Tregs (n=3 exps). After incubation with CD34+ cells in the presence of IL2, on average >80% CD4+CD25+ cells maintained the intracellular expression of FoxP3 and surface expression of CD62L and CD152 (n=3 exps). Then, Tregs autologous to CD34+ cells were isolated from the CB CD34- cell fraction while allogeneic Tregs were isolated from healthy individuals’ peripheral blood. When 2.5 x 104 autologous or allogeneic Tregs were added to an MLC with 2.5 x 104 irradiated CD34+ stimulator cells and allogeneic responders at 1:2 ratio, they suppressed T cell alloreactivity to CD34+ cells on average by 68±14% and 41±16%, respectively (n=3 exps). Our findings suggest that co-transplantation of CD34+ cells and autologous or allogeneic Tregs may allow normal stem cell engraftment while limiting T cell alloreactivity. These results will prompt the design of new strategies in allogeneic hematopoietic stem cell transplantation, particularly in an HLA incompatible setting.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2318-2318
Author(s):  
Yiming Huang ◽  
Larry D Bozulic ◽  
Thomas Miller ◽  
Hong Xu ◽  
Lala-Rukh Hussain ◽  
...  

Abstract CD8+/TCR− graft facilitating cells (FC) are a novel tolerogenic cell population in bone marrow that potently enhance engraftment of hematopoietic stem cells (HSC) in allogeneic and syngeneic recipients. The CD11c+/CD11b−/B220+ plasmacytoid precursor dendritic cell (p-preDC) subpopulation of FC (p-preDC FC) comprises over 60% of FC total and plays a critical and nonredundant role in facilitation. FC prevent graft-versus-host disease and remain tolerogenic after in vivo infusion. Regulatory T cells (Treg) are immunomodulatory cells that maintain tolerance in vivo. They can be generated in vitro via co-culture with p-preDC. There is great interest regarding the use of Treg as a cell-based therapy to induce graft/host tolerance in vivo. However, a major challenge to the clinical use of Treg has been to obtain sufficient numbers of cells for in vivo use and maintain their tolerogenic properties in vivo after in vitro expansion. Here, we evaluated whether FC function by inducing the production of Tregin vivo and examined the function of these chimeric Tregin vivo and in vitro. HSC (c-Kit+Sca-1+Lin−; KSL) were sorted from donor B6 and NOD mice. 10,000 B6 HSC and 1,000 NOD HSC were transplanted by tail-vein injection into recipient NOD mice conditioned with 950 cGy of total body irradiation (TBI). Spleen, thymus, and bone marrow were harvested from recipient NOD mice 5 weeks after transplantation. CD4+CD25+Foxp3+ Treg were analyzed by flow cytometry. FC induced the generation of both donor and recipient CD4+CD25+Foxp3+ Tregin vivo; the majority of Treg were recipient-derived (89% to 97%). To test the function of Treg from HSC + FC chimeras (chimeric Treg), CD8− CD4+CD25+ Treg were sorted from the spleen of chimeras 5 weeks after transplantation. 50,000 chimeric Treg plus 10,000 B6 HSC were transplanted into NOD recipients conditioned with 950 cGy TBI. Recipients of 50,000 Treg from naïve B6 spleens (B6 Treg) + HSC or HSC alone served as controls. Five of 26 recipients of HSC alone engrafted and survived up to 100 days. Only 2 of 5 recipients of HSC plus 50,000 B6 Treg engrafted and none of the recipients exhibited durable engraftment beyond 100 days. In striking contrast, 100% (4 of 4) recipients of HSC + 50,000 chimeric Treg engrafted durably, with survival ≥ 100 days. Chimeric Treg function was confirmed in vitro by MLR suppressor assays, as evidenced by strong suppression of T cell proliferation. Sorted chimeric Treg demonstrated an 87.2% suppression of cell proliferation when plated in a 1:1 ratio with naïve NOD responder cells and B6 stimulator cells. Moreover, when plated at a 1:4 and 1:8 ratio with naïve NOD responders, Treg suppressive function titrated to 62.7% and 43.3%, respectively. In contrast, sorted Treg from naïve B6 animals showed 75.8%, 35.4, and 29.4% suppression when plated in ratios of 1:1, 1:4, and 1:8, respectively. Taken together, these data suggest that FC induce the production of antigen-specific Tregin vivo and chimeric Treg are superior to naïve Treg in suppressing the proliferation of effector T cells and potently enhance engraftment of allogeneic HSC.


Sign in / Sign up

Export Citation Format

Share Document