AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines

Blood ◽  
2009 ◽  
Vol 113 (8) ◽  
pp. 1723-1729 ◽  
Author(s):  
Dana S. Levy ◽  
Jason A. Kahana ◽  
Rakesh Kumar

Abstract The PI3K/AKT signaling is activated in various hematologic malignancies. We evaluated the effect of a novel, pan-AKT kinase inhibitor, GSK690693, on the proliferation of 112 cell lines representing different hematologic neoplasia. Fifty-five percent of all cell lines tested were sensitive to AKT inhibitor (EC50 < 1 μM), with acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma, and Burkitt lymphoma showing 89%, 73%, and 67% sensitivity to GSK690693, respectively. The antiproliferative effect was selective for the malignant cells, as GSK690693 did not inhibit the proliferation of normal human CD4+ peripheral T lymphocytes as well as mouse thymocytes. Phosphorylation of downstream substrates of AKT was reduced in both sensitive and insensitive cell lines on treatment with GSK690693, suggesting that the cause of resistance was not related to the lack of AKT kinase inhibition. Consistent with the role of AKT in cell survival, GSK690693 also induced apoptosis in sensitive ALL cell lines. Overall, our data provide direct evidence for the role of AKT signaling in various hematologic malignancies, especially ALL and some lymphomas.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 155-155
Author(s):  
Maria Rosaria Ricciardi ◽  
Chiara Gregorj ◽  
Fabiana De Cave ◽  
Paola Bergamo ◽  
Samantha Decandia ◽  
...  

Abstract The treatment of adult acute lymphoblastic leukemia (ALL) remains unsatisfactory. A potential hope is now given to Philadelphia-positive cases by targeted treatment modalities. Among other pathways involved in cell proliferation, we have recently demonstrated (Blood2007; 109:5473) the unfavorable role of ERK1/2 phosphorylation as an independent predictor of complete remission (CR) in adult ALL, suggesting the potential therapeutic value of other targeted therapies. The B-cell leukemia/lymphoma 2 (Bcl-2) family of proteins are important regulators of apoptosis and are frequently found aberrantly expressed, particularly in lymphoid malignancies. The role of Bcl-2 overexpression in tumorigenesis and chemoresistance prompted us to investigate whether the inhibition of the antiapoptotic function may result also in ALL in an attractive therapeutic strategy. In this study, we thus investigated the cell cycle and apoptotic effects of ABT-737 (kindly provided by Abbott Laboratories), a Bcl-2 (BH3) inhibitor, on both lymphoid leukemia cell lines and primary adult and childhood ALL cells. The lymphoid leukemia cell lines CEM and MOLT-4 were exposed to increasing concentrations of ABT-737 (from 0.1 to 1 μM) up to 72 hours. A dose- and time-dependent cell growth arrest and induction of apoptosis was found. In fact, measuring the subG0/1 peak at 48 hours, the levels of apoptosis increased in the CEM cell line from 14.1% (DMSO) to 34.4%, 64.5%, 86.5% and 98.6% at ABT-737 concentrations of 0.1, 0.25, 0.5 and 1 μM, respectively. Similarly, 48 hours of exposure to ABT-737 increased in MOLT-4 the Annexin V-positive cells from 7.2% to 64.2%. The effects of ABT-737 were then examined on primary blasts from 9 ALL patients (6 adults and 3 children). Bone marrow aspirates with a blast infiltration &gt;70% were obtained at diagnosis from patients broadly characterized for clinical and biological parameters, as well as therapeutic response. ALL cells were cultured in vitro with ABT-737 (at increasing concentrations from 0.01 to 1 μM) for 24 hours. A significant decrease in viability was observed at 0.01 μM (p=0.008) with a remarkable dose-dependent increase of apoptosis. In fact, Annexin V-positive cells increased from a mean baseline value of 16.8% ± 8.8 to 43.6% ± 22.8 (p=0.04), 66% ± 21.3 (p=0.0001), 70.3% ± 26.9 (p=0.04), 74.6% ± 18.9 (p=0.03) and 76.2% ± 11.8 (p&lt;0.0001) in the presence of ABT-737 at 0.01, 0.1, 0.25, 0.5 and 1 μM, respectively. A significant cell killing was demonstrated in all samples (9/9), including Ph-positive ALL. No significant cell cycle changes were instead detected even at higher concentration of ABT-737. In summary, our study shows for the first time a potent growth-inhibitory and pro-apoptotic activity of the Bcl-2 antagonist ABT-737, at nanomolar concentrations, on primary cells from adult and childhood ALL samples. These results prompt to further extend pre-clinical studies in the different biologically-defined subset of ALL and suggest a potential clinical development of a Bcl-2 family inhibitor in this disease.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4886-4886 ◽  
Author(s):  
Tina-Susann Langhammer ◽  
Catrin Roolf ◽  
Saskia Krohn ◽  
Christin Kretzschmar ◽  
Rayk Huebner ◽  
...  

Abstract Signaling pathways play essential roles in biological processes as development, cell proliferation and homeostasis. The accurate modulation of signaling pathways, their adapted interaction and their time- and tissue-specific adjusted regulation are required for normal cell development. PI3K/Akt and Wnt/β-Catenin signaling pathways act as key regulators in cell proliferation, differentiation and growth. Both signaling pathways include GSK3β as a common protein, which may mediate an interaction and cross-talk between the pathways. Aberrant activation of PI3K/Akt signaling has been linked to different types of leukemia while Wnt/β-Catenin signaling is known to be deregulated in some solid tumors. However, a potential role of Wnt/β-Catenin signaling for pathogenesis of acute lymphoblastic leukemia (ALL) has not yet been analyzed. In our study we analyzed both signaling pathways in different B- and T-ALL cell lines (RS4;11, SEM, REH, CEM, Jurkat, MOLT-4), thereby focusing mainly on their potential interaction via the protein GSK3β. Western Blot experiments were performed to evaluate the expression of specific PI3K/Akt and Wnt/β-Catenin key proteins. To evaluate the activation status of Wnt signaling immunofluorescence and protein fractionation experiments were performed, analyzing the activation linked nucleic localization of β-Catenin. The effect of pathway activation and inhibition on cell proliferation via chemical compounds was analyzed by WST-1 test. High pAkt levels were detected in B-ALL cell line SEM and T-ALL cell line CEM, indicating a hyperactive PI3K/Akt signaling, whereas other analyzed cell lines diplayed lower pAkt status. Among all cell lines analyzed SEM and CEM also showed the highest cytoplasmic β-Catenin levels, indicating a direct interaction of both signaling pathways. However, immunofluorescence and fractionation experiments revealed that a translocation of β-Catenin into the nucleus did not occur. To further investigate the role and interaction of PI3K/Akt and Wnt/β-Catenin signaling, pathway inhibiting and stimulating experiments were performed. Treatment of cells with Wnt3a led to activation of the Wnt/β-Catenin signaling cascade, characterized by nuclear β-Catenin accumulation. Inhibition of cell proliferation was detected after treatment with high concentrations Wnt3a (≥ 500 ng/ml). PI3K inhibition by LY294002 led to decreased phosphorylation of GSK3β at Ser9 and an increased decay of β-Catenin. Stimulation of PI3K/Akt signaling using activating ligand FLT3L induced GSK3β phosphorylation at Ser9 and accumulation of cytoplasmic β-Catenin. However a translocation of β-Catenin into the nucleus seems not to occur. In summary our results indicate that PI3K/Akt and Wnt/β-Catenin signaling can interact through their common protein GSK3β, but stimulation of the PI3K/Akt signaling pathway by addition of PI3K/Akt specific activators does not fully activate Wnt/β-Catenin signaling in ALL cells. Complete activation of the Wnt cascade characterized by translocation of β-Catenin into the nucleus can only be induced by use of specific Wnt effectors. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 33 (10) ◽  
pp. 1386-1391 ◽  
Author(s):  
Hiroaki Goto ◽  
Takuya Naruto ◽  
Reo Tanoshima ◽  
Hiromi Kato ◽  
Tomoko Yokosuka ◽  
...  

1994 ◽  
Vol 14 (11) ◽  
pp. 7604-7610
Author(s):  
H M Pomykala ◽  
S K Bohlander ◽  
P L Broeker ◽  
O I Olopade ◽  
M O Díaz

Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.


Sign in / Sign up

Export Citation Format

Share Document