scholarly journals Residual DNA methylation at remission is prognostic in adult Philadelphia chromosome–negative acute lymphocytic leukemia

Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 1892-1898 ◽  
Author(s):  
Hui Yang ◽  
Tapan Kadia ◽  
Lianchun Xiao ◽  
Carlos E. Bueso-Ramos ◽  
Koyu Hoshino ◽  
...  

Pretreatment aberrant DNA methylation patterns are stable at time of relapse in acute lymphocytic leukemia (ALL). We hypothesized that the detection of residual methylation alterations at the time of morphologic remission may predict for worse prognosis. We developed a real-time bisulfite polymerase chain reaction assay and analyzed the methylation levels of p73, p15, and p57KIP2 at the time of initial remission in 199 patients with Philadelphia chromosome-negative and MLL− ALL. Residual p73 methylation was detected in 18 (9.5%) patients, p15 in 33 (17.4%), and p57KIP2 in 7 (3.7%); 140 (74%) patients had methylation of 0 genes and 48 (25%) of more than or equal to 1 gene. In 123 (65%) patients, matched pretreatment samples were also studied and compared with remission ones: in 82 of those with initial aberrant methylation of at least one gene, 59 (72%) had no detectable methylation at remission and 23 (28%) had detectable residual methylation. By multivariate analysis, the presence of residual p73 methylation was associated with a significant shorter duration of first complete remission (hazard ratio = 2.68, P = .003) and overall survival (hazard ratio = 2.69, P = .002). In conclusion, detection of epigenetic alterations allows the identification of patients with ALL with standard risk but with poor prognosis.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 982-982 ◽  
Author(s):  
Zhihong Fang ◽  
Shaoqing Kuang ◽  
Hui Yang ◽  
Guillermo Garcia-Manero

Abstract Abstract 982 Poster Board I-4 Recently,Mulligan et al have reported on the strong relationship between deletion of IKZF1 and poor prognosis in pediatric acute lymphocytic leukemia (ALL) (NEJM 2009;360:470-80). This study is of significant importance as it may allow for the identification of children with poor prognosis disease not currently identifiable with standard clinical or molecular assays. Aberrant DNA methylation consists on the addition of a methyl group to a cytsosine (C) when it is followed by a guanine (G) in so-called CpG sites. Methylation of CpG rich areas (CpG islands) in the proximity of gene promoters is associated with gene silencing and is considered a functional equivalent to the physical inactivation of genes via deletions or inactivating mutations. Aberrant DNA methylation is very frequent in both adult and pediatric ALL. Indeed, CDKN2A and 2B, two genes known to be frequently methylated in ALL were also found to be deleted in Mullighan's study. Furthermore, CDKN2A has been shown to be both methylated and deleted in patients with hematological malignancies5. Therefore it is possible that aberrant methylation of IKZF1 could provide a functional alternative to its deletion in both adult and pediatric ALL. To study this issue, we analyzed the frequency of IKZF1 methylation in ALL. First using BLAT database (http://genome.brc.mcw.edu/cgi-bin/hgBlat), we established that IKZF1 contains a CpG island in the proximity of its promoter. Subsequently, we designed a set of primers for bisulfite pyrosequencing analysis of IKZF1 methylation (forward primer sequence was GTTATTGTGAAAGAAAGTTGGGAAGAG in positions -116 to -89 from the transcription start site; reverse primer was CCTCCCCCCCAAACTAAAATAC in position +29 to +7 from the start site; and the sequencing primer was AGTTAGTAGGATATTTTAATAAGTG from -78 to -53). Annealing temperature was 59 °C. Conditions for bisulfite conversion of DNA and pyrosequencing have been previously reported. Using these conditions and primers, we first analyzed a battery of 21 leukemia cell lines (Molt4, Jurkat, PEER, T-ALL1, CEM, J-TAG, B-JAB, RS4, ALL1, REH, Raji, Ramos, K562, BV173, HL60, NB4, THP1, U937, OCI-AML3, HEL, KBM5R) of different origins. As negative controls, we used DNA extracted from peripheral blood mononuclear cells from healthy donors and as positive controls SssI treated DNA. None of the cell lines or controls had evidence of DNA methylation of IKZF1 (median 1.53%, range 0.94 to 1.76). By convention, a sample is considered to be methylated if the percent of methylation is above 10 to 15%. Despite the fact that it is extremely unlikely to find DNA methylation in absence of evidence of methylation in cell lines, we decided to analyze the methylation status of IKZF1 in two different cohorts of patients with ALL. The first cohort consisted of a group of pediatric patients (N=20) previously reported by us (Leuk Res 2005;29:881-5). Median methylation was 2.8% (range 1.5 to 11.4). The second cohort of consisted of 17 patients. Median age was 33 years (range 8 to 66); 12 patients (70%) had pre-B/B phenotype, 4 (23%) were female and 14 (82%) had complex cytogenetics. Median methylation was 1.3%, range 0.38 to 2.3%. Our data indicates that functional inactivation of IKZF1 via aberrant DNA methylation is probably a very rare phenomenon in ALL. This data has implications for our understanding of the prognostic role of IZFZ1 in ALL and for future testing of IKZF1 inactivation in this disease. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2007 ◽  
Vol 21 (5) ◽  
pp. 906-911 ◽  
Author(s):  
K Hoshino ◽  
A Quintás-Cardama ◽  
H Yang ◽  
B Sanchez-Gonzalez ◽  
G Garcia-Manero

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1800
Author(s):  
Giusi Russo ◽  
Alfonso Tramontano ◽  
Ilaria Iodice ◽  
Lorenzo Chiariotti ◽  
Antonio Pezone

Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are randomly generated, but strongly selected by deterministic events. Disordered changes of DNA methylation profiles are the hallmarks of all cancer types, but it is not clear if aberrant methylation is the cause or the consequence of cancer evolution. Critical points to address are the profound epigenetic intra- and inter-tumor heterogeneity and the nature of the heterogeneity of the methylation patterns in each single cell in the tumor population. To analyze the methylation heterogeneity of tumors, new technological and informatic tools have been developed. This review discusses the state of the art of DNA methylation analysis and new approaches to reduce or solve the complexity of methylated alleles in DNA or cell populations.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 4131-4136 ◽  
Author(s):  
LanLan Shen ◽  
Minoru Toyota ◽  
Yutaka Kondo ◽  
Toshiro Obata ◽  
Sophia Daniel ◽  
...  

Abstract P57KIP2 is a cyclin-dependent kinase inhibitor silenced in a variety of human malignancies. DNA methylation of a region surrounding the transcription start site of p57KIP2 was found in acute lymphocytic leukemia (ALL)–derived cell lines. Methylation of this region correlated with gene silencing, and treatment of methylated/silenced cell lines with 5-aza-2′-deoxycytidine resulted in gene re-expression. P57KIP2 was methylated in 31 (50%) of 63 patients with newly diagnosed ALL, and in 11 (52%) of 21 patients with relapsed ALL. In 5 of them (25%), methylation was acquired at relapse. No association was observed between methylation of p57KIP2 alone and clinical-biologic characteristics studied, including overall survival (OS) or disease-free survival. Methylation of multiple genes in a cell-cycle regulatory pathway composed of p73, p15, and p57KIP2 occurred in 22% of Philadelphia chromosome (Ph)–negative patients. Ph-negative patients with methylation of 2 or 3 genes of this pathway had a significantly worse median OS compared with those with methylation of 0 or 1 gene (50 vs 467 weeks, respectively;P = .02). Our results indicate that p57KIP2 is frequently methylated in adult patients with ALL, and that inactivation of a pathway composed of p73, p15, and p57KIP2 predicts for poor prognosis in Ph-negative patients.


Cancer ◽  
2003 ◽  
Vol 97 (3) ◽  
pp. 695-702 ◽  
Author(s):  
Guillermo Garcia-Manero ◽  
Sima Jeha ◽  
Jerry Daniel ◽  
Jason Williamson ◽  
Maher Albitar ◽  
...  

2021 ◽  
Author(s):  
Roza Berhanu Lemma ◽  
Thomas Fleischer ◽  
Emily Martinsen ◽  
Vessela N Kristensen ◽  
Ragnhild Eskeland ◽  
...  

Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To shed light on the underlying molecular mechanism driving this process, we hypothesized that aberrant methylation patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between TF binding and DNA methylation in 19 cancer cohorts. We performed emQTL (expression-methylation quantitative trait loci) analyses in each cohort and identified 13 TFs whose expression levels are correlated with local DNA methylation patterns around their binding site in at least 2 cancer types. The 13 TFs are mainly associated with local demethylation and are enriched for pioneer function, suggesting a specific role for these TFs in modulating chromatin structure and transcription in cancer patients. Furthermore, we confirmed that de novo methylation is precluded across cancers at CpGs lying in genomic regions enriched for TF-binding signatures associated with SP1, CTCF, NRF1, GABPA, KLF9, and/or YY1. The modulation of DNA methylation associated with TF binding was observed at cis-regulatory regions controlling immune- and cancer-associated pathways, corroborating that the emQTL signals were derived from both cancer and tumour-infiltrating cells. As a case example, we experimentally confirmed that FOXA1 knock-down is associated with higher methylation in regions bound by FOXA1 in breast cancer MCF-7 cells. Finally, we reported physical interactions between FOXA1 with TET1 and TET2 at physiological levels in MCF-7 cells, adding further support for FOXA1 attracting TET1 and TET2 to induce local demethylation in cancer.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2333-2333 ◽  
Author(s):  
Guillermo Garcia-Manero ◽  
Carlos Bueso-Ramos ◽  
Lianchun Xiao ◽  
Koyu Hoshino ◽  
Gary Rosner ◽  
...  

Abstract Aberrant DNA methylation of multiple promoter CpG islands is a common feature of ALL. Specific DNA methylation patterns involving a triad of hierarchical clustered cell cycle controlling genes including p73, p15 and p57KIP2 predict for poor prognosis in Ph negative ALL (Garcia-Manero, Blood, 2003). Of importance, this aberrant DNA methylation patterns are stable at the time of relapse in a majority of patients. This indicates that aberrant DNA methylation is a fundamental molecular feature of the ALL blast cell (Garcia-Manero, Clinical Cancer Research, 2002). Based on this, we hypothesized that the detection of residual DNA methylation in patients with standard risk (Ph negative) ALL could predict for shorter disease free survival, and worse overall survival (OS) in this patient population. To test this hypothesis, we have analyzed the frequency of p73, p15 and p57KIP2 DNA methylation at the time of initial documentation of complete remission (CR) (days 14 to 21) in 199 patients in CR with Ph negative ALL. All patients had been treated with hyperCVAD-based chemotherapy at our institution. To perform this analysis, we have developed a sensitive and specific novel real-time methylation specific PCR assay to detect DNA methylation. This method requires bisulfite DNA conversion. It uses the interferon-gamma gene as a DNA loading control and can be performed in less than 24 hours. The characteristics of the 199 patients evaluated are: median age 38 years (range 15–83), cytogenetics: 32% diploid, 5% hyper or hypodiploid, 20% insufficient metaphases and 3% MLL+, the rest others. 16% were of T cell phenotype. Using this assay, p73 methylation was detected in 18 (10%) patients, p15 in 33 (16%) and p57KIP2 in 7 (3.5%). Methylation of at least 1 gene of this triad was observed in 48 (24%) patients. The median OS of the whole group was 209 weeks (95% CI 158–514) and the disease free survival (DFS) 146 weeks (95% CI 110–335). These were representative of the overall experience with hyperCVAD at MDACC. By multivariate analysis, the presence of residual p73 methylation on days 14 to 21 in patients with Ph negative ALL was associated with a shorter DFS (hazard ratio 2.68, p=0.003) and a worse OS (hazard ratio 2.69, p=0.002). This was independent of any other patient characteristic. Other characteristic included in these models included age and platelet count for OS, and age, b2-microglobulin, LDH and platelets for DFS. The presence of p15, p57KIP2 methylation or the combination of multiple genes was not associated with shorter OS or DFS. In summary, the detection of residual p73 methylation allows the identification of a subset of patients with ALL in remission and worse prognosis. This data may allow the development of specific therapeutic interventions, such as the use of hypomethylating agents, or early allogeneic stem cell transplantation for this at-risk patient population, and suggest that inactivation of p73 is a key event in ALL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1626-1626
Author(s):  
Christopher C Oakes ◽  
Rainer Claus ◽  
Lei Gu ◽  
Yassen Assenov ◽  
Jennifer Hüllein ◽  
...  

Abstract Evolution and resulting tumor heterogeneity is currently under investigation for many malignancies since it may explain resistance of tumors to therapies. Pronounced intra-tumor genetic variation has been recently appreciated for solid tumors and leukemias, including chronic lymphocytic leukemia (CLL). Heterogeneous epigenetic alterations, such as DNA methylation, have the potential to add complexity to the leukemic cell population. Studies of the CLL methylome have revealed an abundance of genomic loci that display altered DNA methylation states, including methylation marks showing high prognostic significance. Despite the ubiquity of these epigenetic alterations, the mechanisms and impact of changes to the tumor epigenome in CLL are currently undefined. Here, we have used Illumina 450k arrays and next-generation sequencing to evaluate intra-tumor heterogeneity and evolution of DNA methylation and genetic aberrations in 80 cases of CLL, with 30 cases evaluated at two or more time points. CLL cases exhibit vast inter-patient differences in intra-tumor methylation heterogeneity. Genetically clonal cases maintain low methylation heterogeneity, resulting in up to 10% of total CpGs existing in a monoallelically-methylated state throughout the tumor cell population. Cases with high levels of methylation heterogeneity display a significantly shorter treatment-free time window preceding first therapy (median difference 11 vs. 49 months, P<0.01), coincident with unfavorable prognostic markers (IGHV unmutated, P<0.01; ZAP70 demethylated, P<0.05). Increasing methylation heterogeneity correlates with advanced genetic subclonal complexity (P<0.001). Intriguingly, a longitudinal evaluation reveals that selection of novel global DNA methylation patterns is observed only in cases that undergo genetic evolution. The level of methylation heterogeneity and presence of a genetic subclonal driver mutation in early time points are significantly associated with methylation evolution, signifying that heterogeneity indicates the presence of active evolution occurring within the tumor population. Independent genetic evolution without broad alterations to DNA methylation is uncommon and is associated with low-risk genetic alterations (e.g. deletion of 13q14). Cases showing high levels of methylation evolution display a significantly shorter event-free time window following first therapy (median survival 9 vs. 110 months, P<0.0001). This study articulates the novel finding of epigenetic and genetic coevolution in leukemia and highlights the dominant role of genetic aberrations in the selection of developing methylation patterns. As epigenetics plays a key role in determining cellular phenotypes, we propose that parallel alterations to the genome and epigenome endow expanding subclonal leukemic populations with novel attributes which contribute to acquired therapy resistance. This work also advocates a benefit of monitoring DNA methylation heterogeneity and evolution during CLL disease course. Disclosures: Kipps: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Stilgenbauer:Roche: Consultancy, Research Funding, Travel grants Other; Mundipharma: Consultancy, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document