CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages

Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 4961-4970 ◽  
Author(s):  
Xingguang Liu ◽  
Ming Yao ◽  
Nan Li ◽  
Chunmei Wang ◽  
Yuanyuan Zheng ◽  
...  

Abstract Calcium and its major downstream effector, calcium/calmodulin-dependent protein kinase II (CaMKII), are found to be important for the functions of immune cells. Lipopolysaccharide (LPS) has been shown to induce intracellular calcium release in macrophages; however, whether and how CaMKII is required for Toll-like receptor (TLR) signaling remain unknown. Here we demonstrate that TLR 4, 9, and 3 ligands markedly induce intracellular calcium fluxes and activate CaMKII-α in macrophages. Selective inhibition or RNA interference of CaMKII significantly suppresses TLR4, 9, 3-triggered production of interleukin-6 (IL-6), tumor necrosis factor-α, and interferon-α/β (IFN-α/β) in macrophages. Coincidently, overexpression of constitutively active CaMKII-α significantly enhances production of the above cytokines. In addition to the activation of mitogen-activated protein kinase and nuclear factor κB pathways, CaMKII-α can directly bind and phosphorylate transforming growth factor β–activated kinase 1 (TAK1) and IFN regulatory factor 3 (IRF3; serine on 386) via the N-terminal part of its regulatory domain. Therefore, CaMKII can be activated by TLR ligands, and in turn promotes both myeloid differentiating factor 88 and Toll/IL-1 receptor domain-containing adaptor protein-inducing IFN-β–dependent inflammatory responses by directly activating TAK1 and IRF3. The cross-talk with the calcium/CaMKII pathway is needed for full activation of TLR signaling in macrophages.

2009 ◽  
Vol 20 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Wei Zuo ◽  
Ye-Guang Chen

Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.


2012 ◽  
Vol 32 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Satoshi Kokubo ◽  
Norihiko Sakai ◽  
Kengo Furuichi ◽  
Tadashi Toyama ◽  
Shinji Kitajima ◽  
...  

Background Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis, and yet the precise pathogenic mechanisms of peritoneal fibrosis remain unknown. Fibrocytes participate in tissue fibrosis and express chemokine receptors that are necessary for migration. The p38 mitogen-activated protein kinase (MAPK) pathway regulates the production of chemokines and has been demonstrated to contribute to the pathogenesis of various fibrotic conditions. Accordingly, we used an experimental mouse model of peritoneal fibrosis to examine the dependency of fibrocytes on p38MAPK signaling. Methods Peritoneal fibrosis was induced in mice by the injection of 0.1% chlorhexidine gluconate (CG) into the abdominal cavity. Mice were treated with FR167653, a specific inhibitor of p38MAPK, and immunohistochemical studies were performed to detect fibrocytes and cells positive for phosphorylated p38MAPK. The involvement of p38MAPK in the activation of fibrocytes also was also investigated in vitro. Results Fibrocytes infiltrated peritoneum in response to CG, and that response was accompanied by progressive peritoneal fibrosis. The phosphorylation of p38MAPK, as defined by CD45+ spindle-shaped cells, was detected both in peritoneal mesothelial cells and in fibrocytes. The level of peritoneal expression of CCL2, a chemoattractant for fibrocytes, was upregulated by CG injection, and treatment with FR167653 reduced the number of cells positive for phosphorylated p38MAPK, the peritoneal expression of CCL2, and the extent of peritoneal fibrosis. Pretreatment with FR167653 inhibited the expression of procollagen type I α1 induced by transforming growth factor-β1 Conclusions Our results suggest that p38MAPK signaling contributes to peritoneal fibrosis by regulating fibrocyte function.


2002 ◽  
Vol 115 (15) ◽  
pp. 3193-3206 ◽  
Author(s):  
Andrei V. Bakin ◽  
Cammie Rinehart ◽  
Anne K. Tomlinson ◽  
Carlos L. Arteaga

Transforming growth factor β (TGFβ) contributes to tumor progression by inducing an epithelial to mesenchymal transdifferentiation(EMT) and cell migration. We found that TGFβ-induced EMT was blocked by inhibiting activation of p38 mitogen-activated protein kinase (MAPK) with H-7,a protein kinase C inhibitor, and with SB202190, a direct inhibitor of p38MAPK. Inhibition of the p38MAPK pathway affected TGFβ-mediated phosphorylation of ATF2, but did not inhibit phosphorylation of Smad2. SB202190 impaired TGFβ-mediated changes in cell shape and reorganization of the actin cytoskeleton. Forced expression of dominant-negative (DN) MAPK kinase 3 (MKK3) inhibited TGFβ-mediated activation of p38MAPK and EMT. Expression of DN-p38α impaired TGFβ-induced EMT. Inhibition of p38MAPK blocked TGFβ-induced migration of non-tumor and tumor mammary epithelial cells. TGFβ induced activation of the p38MAPK pathway within 15 minutes. Expression of TGFβ type II (TβRII) and type I(TβRI/Alk5) kinase-inactive receptors blocked EMT and activation of p38MAPK, whereas expression of constitutively active Alk5-T204D resulted in EMT and phosphorylation of MKK3/6 and p38MAPK. Finally, dominant-negative Rac1N17 blocked TGFβ-induced activation of the p38MAPK pathway and EMT,suggesting that Rac1 mediates activation of the p38MAPK pathway. These studies suggest that the p38MAPK pathway is required for TGFβ-mediated EMT and cell migration.


2015 ◽  
Vol 210 (7) ◽  
pp. 1117-1131 ◽  
Author(s):  
Neil J. Grimsey ◽  
Berenice Aguilar ◽  
Thomas H. Smith ◽  
Phillip Le ◽  
Amanda L. Soohoo ◽  
...  

Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β–activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2–mediated ubiquitination and TAB1–TAB2. TAB1–TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.


Sign in / Sign up

Export Citation Format

Share Document