scholarly journals Notch1 and TGFβ1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells

Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1813-1821 ◽  
Author(s):  
Jeremy B. Samon ◽  
Ameya Champhekar ◽  
Lisa M. Minter ◽  
Janice C. Telfer ◽  
Lucio Miele ◽  
...  

Abstract Notch and its ligands have been implicated in the regulation and differentiation of various CD4+ T-helper cells. Regulatory T cells (Tregs), which express the transcription factor Foxp3, suppress aberrant immune responses that are typically associated with autoimmunity or excessive inflammation. Previous studies have shown that transforming growth factor beta (TGFβ1) induces Foxp3 expression and a regulatory phenotype in peripheral T cells. Here, we show that pharmacologic inhibition of Notch signaling using γ-secretase inhibitor (GSI) treatment blocks (1) TGFβ1-induced Foxp3 expression, (2) the up-regulation of Foxp3-target genes, and (3) the ability to suppress naive T-cell proliferation. In addition, the binding of Notch1, CSL, and Smad to conserved binding sites in the foxp3 promoter can be inhibited by treatment with GSI. Finally, in vivo administration of GSI results in reduced Foxp3 expression and development of symptoms consistent with autoimmune hepatitis, a disease previously found to result from dysregulation of TGFβ signaling and regulatory T cells. Together, these findings indicate that the Notch and TGFβ signaling pathways cooperatively regulate Foxp3 expression and regulatory T-cell maintenance both in vitro and in vivo.

Blood ◽  
2011 ◽  
Vol 117 (8) ◽  
pp. 2494-2505 ◽  
Author(s):  
Yiming Huang ◽  
Larry D. Bozulic ◽  
Thomas Miller ◽  
Hong Xu ◽  
Lala-Rukh Hussain ◽  
...  

Abstract CD8-positive/T-cell receptor–negative (CD8+/TCR−) graft facilitating cells (FCs) are a novel cell population in bone marrow that potently enhance engraftment of hemopoietic stem cells (HSCs). Previously, we showed that the CD11c+/B220+/CD11b− plasmacytoid-precursor dendritic cell (p-preDC) FC subpopulation plays a critical but nonredundant role in facilitation. In the present study, we investigated the mechanism of FC function. We report that FCs induce antigen-specific CD4+/CD25+/FoxP3+ regulatory T cells (Tregs) in vivo. The majority of chimeric Tregs were recipient derived. Chimeric Tregs harvested at ≥ 4 weeks after transplantation significantly enhanced engraftment of donor- and recipient-derived HSCs, but not third-party HSCs, in conditioned secondary recipients, demonstrating antigen specificity. Although Tregs were present 2 and 3 weeks after transplantation, they did not enhance engraftment. In contrast, week 5 and greater Tregs potently enhanced engraftment. The function of chimeric Tregs was directly correlated with the development of FoxP3 expression. Chimeric Tregs also induced significantly stronger suppression of T-cell proliferation to donor antigen in vitro. Removal of p-preDC FCs resulted in impaired engraftment of allogeneic HSCs and failure to produce chimeric Tregs, suggesting that the CD8α+ p-preDC subpopulation is critical in the mechanism of facilitation. These data suggest that FCs induce the production of antigen-specific Tregs in vivo, which potently enhance engraftment of allogeneic HSCs. FCs hold clinical potential because of their ability to remain tolerogenic in vivo.


2013 ◽  
Vol 210 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Wing-hong Kwan ◽  
William van der Touw ◽  
Estela Paz-Artal ◽  
Ming O. Li ◽  
Peter S. Heeger

Thymus-derived (natural) CD4+ FoxP3+ regulatory T cells (nT reg cells) are required for immune homeostasis and self-tolerance, but must be stringently controlled to permit expansion of protective immunity. Previous findings linking signals transmitted through T cell–expressed C5a receptor (C5aR) and C3a receptor (C3aR) to activation, differentiation, and expansion of conventional CD4+CD25− T cells (T conv cells), raised the possibility that C3aR/C5aR signaling on nT reg cells could physiologically modulate nT reg cell function and thereby further impact the induced strength of T cell immune responses. In this study, we demonstrate that nT reg cells express C3aR and C5aR, and that signaling through these receptors inhibits nT reg cell function. Genetic and pharmacological blockade of C3aR/C5aR signal transduction in nT reg cells augments in vitro and in vivo suppression, abrogates autoimmune colitis, and prolongs allogeneic skin graft survival. Mechanisms involve C3a/C5a-induced phosphorylation of AKT and, as a consequence, phosphorylation of the transcription factor Foxo1, which results in lowered nT reg cell Foxp3 expression. The documentation that C3a/C3aR and C5a/C5aR modulate nT reg cell function via controlling Foxp3 expression suggests targeting this pathway could be exploited to manipulate pathogenic or protective T cell responses.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 731-731
Author(s):  
Amy Beres ◽  
Richard Komorowski ◽  
William R. Drobyski

Abstract Abstract 731 Graft versus host disease (GVHD) is a proinflammatory T cell-mediated syndrome that is the major complication of allogeneic bone marrow transplantation (BMT). During the course of GVHD, there is a progressive loss of regulatory T cells (Tregs), leading to an imbalance between the effector and regulatory arms of the immune system. Tregs have been subdivided into two distinct subsets, termed natural and induced, which have overlapping yet unique characteristics. While the role of natural regulatory T cells (nTregs) in GVHD biology has been extensively examined, the role of induced regulatory T cells (iTregs) remains largely unknown. An attractive aspect of the latter cell population is that they can be differentiated in vitro from conventional T cells and expanded in large numbers making them a potential source for regulatory T cell therapy in vivo. To determine whether in vitro-expanded iTregs were able to suppress alloreactive donor T cell responses and to compare the efficacy of these cells relative to nTregs, studies were performed using an MHC-incompatible murine BMT model (B6[H−2b]−Balb/c[H−2d]). In initial studies, purified CD4+ Foxp3EGFP– T cells obtained from B6 Foxp3EGFP reporter mice were cultured with anti-CD3 and anti-CD28 antibodies in the presence of IL-2 and TGF-b. After three days in culture, approximately 60–70% of cells were Foxp3+, expressed GITR, CD25, and CD103, and were equally suppressive to nTregs in mixed lymphocyte cultures. To determine if iTregs were suppressive in vivo, lethally irradiated Balb/c mice were transplanted with either B6 BM alone, B6 BM and spleen cells, or B6 BM/spleen cells and in vitro-expanded iTregs. In contrast to in vitro results, adoptive transfer of iTregs failed to protect mice from lethal GVHD even when administered at high Treg: effector T cell ratios (5:1) and were much less effective than equivalent doses of nTregs at abrogating GVHD pathology. iTregs also had no additive effect when co-administered with nTregs. Notably, we observed that whereas transferred nTregs persisted for up to 60 days in transplanted animals, iTregs were undetectable after only 14 days in liver, lung, colon and spleen, indicating that reduced in vivo survival was a potential explanation for the lack of protection. Further examination, however, revealed that the inability to detect iTregs was primarily attributable to the loss of Foxp3 expression and the subsequent in vivo reversion of these cells to a proinflammatory phenotype characterized by the secretion of interferon-gamma. In prior studies (Chen et al, Blood, 2009), we demonstrated that blockade of IL-6 signaling augmented reconstitution of nTregs and reduced overall GVHD severity. To determine whether inhibition of IL-6 could stabilize Foxp3 expression and prevent phenotypic reversion of iTregs, lethally irradiated Balb/c recipients were transplanted with B6 BM and spleen cells along with in vitro-differentiated iTregs and then treated with either isotype control or anti-IL-6R-specific antibody. Analysis of cells obtained from spleen, liver, lung and colon revealed that blockade of IL-6 signaling did not prevent loss of Foxp3 expression or reversion of iTregs to a Th1 cytokine phenotype. While Tregs can be converted from conventional T cells in vitro, they can also be generated in vivo during inflammatory syndromes. We therefore examined whether in vivo induction of iTregs occurred during GVHD and the extent to which blockade of IL-6 signaling affected iTreg expansion and overall GVHD protection. To address this question, lethally irradiated Balb/c mice were transplanted with B6 Rag-1 BM cells and purified CD4+ Foxp3EGFP– T cells, and then treated with either anti-IL-6R or control antibody. We observed that in vivo conversion of Tregs was negligible in control animals (<1%), but that administration of anti-IL-6R antibody significantly increased the relative and absolute number of iTregs in GVHD target tissues with a commensurate reduction in overall pathological damage. Thus, blockade of IL-6 signaling was able to enhance reconstitution of iTregs in vivo, but had no discernible affect on adoptively transferred iTregs. In summary, these studies demonstrate that the stability of Foxp3 expression is a critical factor in the maintenance of transplantation tolerance and that instability of expression limits the utility of adoptively transferred iTregs as a source of cellular therapy for the abrogation of GVHD. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takashi MaruYama ◽  
Shuhei Kobayashi ◽  
Hiroko Nakatsukasa ◽  
Yuki Moritoki ◽  
Daiki Taguchi ◽  
...  

Regulatory T cells (Tregs) play a crucial role in preventing antitumor immune responses in cancer tissues. Cancer tissues produce large amounts of transforming growth factor beta (TGF-β), which promotes the generation of Foxp3+ Tregs from naïve CD4+ T cells in the local tumor microenvironment. TGF-β activates nuclear factor kappa B (NF-κB)/p300 and SMAD signaling, which increases the number of acetylated histones at the Foxp3 locus and induces Foxp3 gene expression. TGF-β also helps stabilize Foxp3 expression. The curcumin analog and antitumor agent, GO-Y030, prevented the TGF-β-induced generation of Tregs by preventing p300 from accelerating NF-κB-induced Foxp3 expression. Moreover, the addition of GO-Y030 resulted in a significant reduction in the number of acetylated histones at the Foxp3 promoter and at the conserved noncoding sequence 1 regions that are generated in response to TGF-β. In vivo tumor models demonstrated that GO-Y030-treatment prevented tumor growth and reduced the Foxp3+ Tregs population in tumor-infiltrating lymphocytes. Therefore, GO-Y030 exerts a potent anticancer effect by controlling Treg generation and stability.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3653
Author(s):  
Niklas Zimmer ◽  
Franziska K. Krebs ◽  
Sophia Zimmer ◽  
Heidrun Mitzel-Rink ◽  
Elena J. Kumm ◽  
...  

Platelets have been recently described as an important component of the innate and adaptive immunity through their interaction with immune cells. However, information on the platelet–T cell interaction in immune-mediated diseases remains limited. Glycoprotein A repetitions predominant (GARP) expressed on platelets and on activated regulatory T cells (Treg) is involved in the regulation of peripheral immune responses by modulating the bioavailability of transforming growth factor β (TGF-β). Soluble GARP (sGARP) exhibits strong regulatory and anti-inflammatory capacities both in vitro and in vivo, leading to the induction of peripheral Treg. Herein, we investigated the effect of platelet-derived GARP on the differentiation, phenotype, and function of T effector cells. CD4+CD25− T cells cocultured with platelets upregulated FoxP3, the master transcription factor for Treg, were anergic, and were strongly suppressive. These effects were reversed by using a blocking anti-GARP antibody, indicating a dependency on GARP. Importantly, melanoma patients in different stages of disease showed a significant upregulation of GARP on the platelet surface, correlating to a reduced responsiveness to immunotherapy. In conclusion, our data indicate that platelets induce peripheral Treg via GARP. These findings might contribute to diseases such as cancer-associated thrombocytosis, wherein poor prognosis and metastasis are associated with high counts of circulating platelets.


2008 ◽  
Vol 82 (10) ◽  
pp. 5043-5053 ◽  
Author(s):  
Hirotoshi Ebinuma ◽  
Nobuhiro Nakamoto ◽  
Yun Li ◽  
David A. Price ◽  
Emma Gostick ◽  
...  

ABSTRACT CD4+CD25+ regulatory T cells (CD25+ Tregs) play a key role in immune regulation. Since hepatitis C virus (HCV) persists with increased circulating CD4+CD25+ T cells and virus-specific effector T-cell dysfunction, we asked if CD4+CD25+ T cells in HCV-infected individuals are similar to natural Tregs in uninfected individuals and if they include HCV-specific Tregs using the specific Treg marker FoxP3 at the single-cell level. We report that HCV-infected patients display increased circulating FoxP3+ Tregs that are phenotypically and functionally indistinguishable from FoxP3+ Tregs in uninfected subjects. Furthermore, HCV-specific FoxP3+ Tregs were detected in HCV-seropositive persons with antigen-specific expansion, major histocompatibility complex class II/peptide tetramer binding affinity, and preferential suppression of HCV-specific CD8 T cells. Transforming growth factor β contributed to antigen-specific Treg expansion in vitro, suggesting that it may contribute to antigen-specific Treg expansion in vivo. Interestingly, FoxP3 expression was also detected in influenza virus-specific CD4 T cells. In conclusion, functionally active and virus-specific FoxP3+ Tregs are induced in HCV infection, thus providing targeted immune regulation in vivo. Detection of FoxP3 expression in non-HCV-specific CD4 T cells suggests that immune regulation through antigen-specific Treg induction extends beyond HCV.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


2009 ◽  
Vol 206 (12) ◽  
pp. 2701-2715 ◽  
Author(s):  
Sven Klunker ◽  
Mark M.W. Chong ◽  
Pierre-Yves Mantel ◽  
Oscar Palomares ◽  
Claudio Bassin ◽  
...  

Forkhead box P3 (FOXP3)+CD4+CD25+ inducible regulatory T (iT reg) cells play an important role in immune tolerance and homeostasis. In this study, we show that the transforming growth factor-β (TGF-β) induces the expression of the Runt-related transcription factors RUNX1 and RUNX3 in CD4+ T cells. This induction seems to be a prerequisite for the binding of RUNX1 and RUNX3 to three putative RUNX binding sites in the FOXP3 promoter. Inactivation of the gene encoding RUNX cofactor core-binding factor-β (CBFβ) in mice and small interfering RNA (siRNA)-mediated suppression of RUNX1 and RUNX3 in human T cells resulted in reduced expression of Foxp3. The in vivo conversion of naive CD4+ T cells into Foxp3+ iT reg cells was significantly decreased in adoptively transferred CbfbF/F CD4-cre naive T cells into Rag2−/− mice. Both RUNX1 and RUNX3 siRNA silenced human T reg cells and CbfbF/F CD4-cre mouse T reg cells showed diminished suppressive function in vitro. Circulating human CD4+ CD25high CD127− T reg cells significantly expressed higher levels of RUNX3, FOXP3, and TGF-β mRNA compared with CD4+CD25− cells. Furthermore, FOXP3 and RUNX3 were colocalized in human tonsil T reg cells. These data demonstrate Runx transcription factors as a molecular link in TGF-β–induced Foxp3 expression in iT reg cell differentiation and function.


Blood ◽  
2006 ◽  
Vol 109 (9) ◽  
pp. 4071-4079 ◽  
Author(s):  
Dong Zhang ◽  
Wei Yang ◽  
Nicolas Degauque ◽  
Yan Tian ◽  
Allison Mikita ◽  
...  

Abstract Recent studies have demonstrated that in peripheral lymphoid tissues of normal mice and healthy humans, 1% to 5% of αβ T-cell receptor–positive (TCR+) T cells are CD4−CD8− (double-negative [DN]) T cells, capable of down-regulating immune responses. However, the origin and developmental pathway of DN T cells is still not clear. In this study, by monitoring CD4 expression during T-cell proliferation and differentiation, we identified a new differentiation pathway for the conversion of CD4+ T cells to DN regulatory T cells. We showed that the converted DN T cells retained a stable phenotype after restimulation and that furthermore, the disappearance of cell-surface CD4 molecules on converted DN T cells was a result of CD4 gene silencing. The converted DN T cells were resistant to activation-induced cell death (AICD) and expressed a unique set of cell-surface markers and gene profiles. These cells were highly potent in suppressing alloimmune responses both in vitro and in vivo in an antigen-specific manner. Perforin was highly expressed by the converted DN regulatory T cells and played a role in DN T-cell–mediated suppression. Our findings thus identify a new differentiation pathway for DN regulatory T cells and uncover a new intrinsic homeostatic mechanism that regulates the magnitude of immune responses. This pathway provides a novel, cell-based, therapeutic approach for preventing allograft rejection.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3096-3103 ◽  
Author(s):  
Kenrick Semple ◽  
Antony Nguyen ◽  
Yu Yu ◽  
Honglin Wang ◽  
Claudio Anasetti ◽  
...  

Abstract CD28 costimulation is required for the generation of naturally derived regulatory T cells (nTregs) in the thymus through lymphocyte-specific protein tyrosine kinase (Lck) signaling. However, it is not clear how CD28 costimulation regulates the generation of induced Tregs (iTregs) from naive CD4 T-cell precursors in the periphery. To address this question, we induced iTregs (CD25+Foxp3+) from naive CD4 T cells (CD25−Foxp3−) by T-cell receptor stimulation with additional transforming growth factorβ (TGFβ) in vitro, and found that the generation of iTregs was inversely related to the level of CD28 costimulation independently of IL-2. Using a series of transgenic mice on a CD28-deficient background that bears wild-type or mutated CD28 in its cytosolic tail that is incapable of binding to Lck, phosphoinositide 3-kinase (PI3K), or IL-2–inducible T-cell kinase (Itk), we found that CD28-mediated Lck signaling plays an essential role in the suppression of iTreg generation under strong CD28 costimulation. Furthermore, we demonstrate that T cells with the CD28 receptor incapable of activating Lck were prone to iTreg induction in vivo, which contributed to their reduced ability to cause graft-versus-host disease. These findings reveal a novel mechanistic insight into how CD28 costimulation negatively regulates the generation of iTregs, and provide a rationale for promoting T-cell immunity or tolerance by regulating Tregs through targeting CD28 signaling.


Sign in / Sign up

Export Citation Format

Share Document