scholarly journals Primitive quiescent CD34+ cells in chronic myeloid leukemia are targeted by in vitro expanded natural killer cells, which are functionally enhanced by bortezomib

Blood ◽  
2009 ◽  
Vol 113 (4) ◽  
pp. 875-882 ◽  
Author(s):  
Agnes S. M. Yong ◽  
Keyvan Keyvanfar ◽  
Nancy Hensel ◽  
Rhoda Eniafe ◽  
Bipin N. Savani ◽  
...  

AbstractPrimitive quiescent CD34+ chronic myeloid leukemia (CML) cells are more biologically resistant to tyrosine kinase inhibitors than their cycling counterparts; however, graft-versus-leukemia (GVL) effects after allogeneic stem cell transplantation (SCT) probably eliminate even these quiescent cells in long-term surviving CML transplant recipients. We studied the progeny of CD34+ cells from CML patients before SCT, which were cultured 4 days in serum-free media with hematopoietic growth factors. BCR-ABL expression was similar in both cycling and quiescent noncycling CD34+ populations. Quiescent CD34+ cells from CML patients were less susceptible than their cycling CD34+ and CD34− counterparts to lysis by natural killer (NK) cells from their HLA-identical sibling donors. Compared with cycling populations, quiescent CD34+ CML cells had higher surface expression of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5. Bortezomib up-regulated TRAIL receptor expression on quiescent CD34+ CML cells, and further enhanced their susceptibility to cytotoxicity by in vitro expanded donor NK cells. These results suggest that donor-derived NK cell–mediated GVL effects may be improved by sensitizing residual quiescent CML cells to NK-cell cytotoxicity after SCT. Such treatment, as an adjunct to donor lymphocyte infusions and pharmacologic therapy, may reduce the risk of relapse in CML patients who require treatment by SCT.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1008-1008
Author(s):  
Agnes S.M. Yong ◽  
Keyvan Keyvanfar ◽  
Nancy Hensel ◽  
Rhoda Eniafe ◽  
Bipin N. Savani ◽  
...  

Abstract Primitive quiescent CD34+ cells in chronic myeloid leukemia (CML) are relatively resistant to the tyrosine kinase inhibitors imatinib and dasatinib, which may explain the persistence of detectable BCR-ABL transcripts following treatment with these agents. Conversely, allogeneic stem cell transplantation (SCT) can eradicate residual CML, suggesting that quiescent stem cells are eliminated by graft-versus-leukemia (GVL) effects. We studied the progeny of CD34+ cells after 4 days culture in serum-free media supplemented with interleukin-3, interleukin-6, stem cell factor, granulocyte-colony stimulating factor and Flt-3 ligand in 14 CML patients (8 chronic phase, 6 advanced phase) who subsequently received T cell depleted SCT from their HLA-identical sibling donors. Cycling CD34-negative and CD34+, and non-cycling quiescent CD34+ CML cells were isolated by fluorescence activated cell sorting. Fluorescence in situ hybridization in 4 representative CML patients revealed over 80% BCR-ABL positivity in both quiescent and cycling CD34+ and CD34-negative populations. Using real-time quantitative polymerase chain reaction, we found the expression of BCR-ABL, and leukemia-associated antigens (LAA), WT1, PR3 and ELA2, were the same in both cycling and quiescent CD34+ cell populations in CML. LAA expression was not significantly different when compared with similarly cultured CD34+ cells from healthy donors. Pre-SCT quiescent CD34+ cells from CML patients were lysed by natural killer (NK) cells from their donors but were less susceptible than their cycling CD34+ and CD34-negative counterparts. Purified donor NK cells (n=7) expanded after 11–13 days culture with interleukin-2 and irradiated EBV-LCL lysed quiescent CD34+ CML cells as well as their cycling CD34+ and CD34-negative progeny. Previous studies have demonstrated that bortezomib can sensitize malignant cells to NK-cell tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (Lundqvist et al Cancer Res. 2006 Jul 15;66(14):7317–25). Addition of bortezomib 10nM to CD34+ cell cultures enhanced cytotoxic effects of expanded donor NK cells on quiescent CD34+ CML cells. As observed with other malignancies, this enhanced sensitivity to NK-cytotoxicity correlated with increased expression of TRAIL receptors DR4 and DR5 on the surface of CD34+ quiescent cells, compared with cycling CD34+ or CD34-negative cells. Bortezomib treatment did not significantly affect the expression of MHC Class I, MIC A/B or Fas (CD95) on CD34+ quiescent or cycling cells. These results suggest that adoptive transfer of in vitro expanded donor NK cells with concomitant administration of bortezomib to the recipient may enhance cytotoxicity to quiescent CD34+ cells and may improve NK-mediated GVL effects. This may be particularly applicable to CML patients who are increasingly transplanted in more advanced stage disease, and so are at a greater risk of relapse post-SCT.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3395-3395
Author(s):  
Agnes S.M. Yong ◽  
Nicole Stephens ◽  
Keyvan Keyvanfar ◽  
Bipin N. Savani ◽  
Rhoda Eniafe ◽  
...  

Abstract Abstract 3395 Although non-cycling quiescent CD34+ chronic myeloid leukemia (CML) cells are more resistant to tyrosine kinase inhibitors (TKI) and cell-mediated immunity than their cycling counterparts, bortezomib treatment of these cells enhances the cytotoxic effect of allogeneic natural killer (NK) cells from HLA-identical sibling donors against them (Yong, et al, Blood 2009;113:875-82). To extend these observations for clinical application in CML patients ineligible for allogeneic stem cell transplantation, we studied the effect of autologous NK cells from patients with established CML against cycling and quiescent CD34+ CML cells. Purified NK cells from CML patients were cultured over 11–18 days, according to the technique previously reported for NK cells from healthy individuals, using irradiated EBV-LCLs as feeder cells, and interleukin-2. Autologous NK cells were expanded in 12 (6 chronic phase, 6 accelerated phase [AP]) of 14 CML patients with overt disease, achieving greater than 10-fold NK expansion in over 75% of patients. Expanded autologous NK cells were BCR-ABL negative by fluorescence in situ hybridization. In two patients with advanced CML (one blast crisis and another AP), autologous NK cells failed to expand. Using fluorescence activated cell sorting, the progeny of CD34+ CML cells after 4 days culture in serum-free media supplemented with interleukin-3, interleukin-6, stem cell factor, granulocyte-colony stimulating factor and Flt-3 ligand were isolated into cycling CD34-negative and CD34+, and non-cycling quiescent CD34+ populations. Expanded autologous NK cells lysed quiescent CD34+ cells from CML patients but these non-cycling cells were less susceptible to lysis than their cycling CD34+ and CD34-negative counterparts. Addition of the clinically achievable dose of 10nM bortezomib to CD34+ cell cultures significantly enhanced the cytotoxic effects of expanded autologous NK cells on cycling and quiescent non-cycling CD34+ CML cells by 20–40% compared to without pre-treatment. The increased sensitivity to autologous NK-cytotoxicity correlated with increased expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5 on the surface of CD34+ quiescent cells, and was reversed by blocking TRAIL. Conversely, enhanced autologous NK-cytotoxicity against cycling CD34+ cells occurred independent of TRAIL and was mediated through upregulation of NKG2D ligands MICA/B, and reversed by NKG2D blockade. The direct pharmacologic effect of bortezomib on primitive CML progenitors is complementary to its ability to sensitize quiescent and cycling CD34+ CML cells to autologous NK cell cytotoxicity, and these findings support its further development as an adjunct treatment with adoptive transfer of autologous expanded NK cells in CML patients who are resistant to TKI and are not eligible for allogeneic stem cell transplantation. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yu-Jun Dai ◽  
Si-Yuan He ◽  
Fang Hu ◽  
Xue-Ping Li ◽  
Jian-Ming Zhang ◽  
...  

AbstractAcute myeloid leukemia (AML) is still incurable due to its heterogeneity and complexity of tumor microenvironment. It is imperative therefore to understand the molecular pathogenesis of AML and identify leukemia-associated biomarkers to formulate effective treatment strategies. Here, we systematically analyzed the clinical characters and natural killer (NK) cells portion in seventy newly-diagnosis (ND) AML patients. We found that the proportion of NK cells in the bone marrow of ND-AML patients could predict the prognosis of patients by analyzing the types and expression abundance of NK related ligands in tumor cells. Furthermore, MCL1 inhibitor but not BCL2 inhibitor combined with NK cell-based immunotherapy could effectively improve the therapeutic efficiency via inhibiting proliferation and inducing apoptosis of AML primary cells as well as cell lines in vitro. There results provide valuable insights that could help for exploring new therapeutic strategies for leukemia treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Berna Bou-Tayeh ◽  
Vladimir Laletin ◽  
Nassim Salem ◽  
Sylvaine Just-Landi ◽  
Joanna Fares ◽  
...  

Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rβ expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.


2019 ◽  
Author(s):  
Elena Vendrame ◽  
Christof Seiler ◽  
Thanmayi Ranganath ◽  
Nancy Q. Zhao ◽  
Rosemary Vergara ◽  
...  

ABSTRACTObjectiveOur objective was to investigate the mechanisms that govern natural killer (NK) cell responses to HIV, with a focus on specific receptor-ligand interactions involved in HIV recognition by NK cells.Design and MethodsWe first performed a mass cytometry-based screen of NK cell receptor expression patterns in healthy controls and HIV+ individuals. We then focused mechanistic studies on the expression and function of T cell immunoreceptor with Ig and ITIM domains (TIGIT).ResultsThe mass cytometry screen revealed that TIGIT is upregulated on NK cells of untreated HIV+ women, but not in antiretroviral-treated women. TIGIT is an inhibitory receptor that is thought to mark exhausted NK cells; however, blocking TIGIT did not improve anti-HIV NK cell responses. In fact, the TIGIT ligands CD112 and CD155 were not upregulated on CD4+ T cells in vitro or in vivo, providing an explanation for the lack of benefit from TIGIT blockade. TIGIT expression marked a unique subset of NK cells that express significantly higher levels of NK cell activating receptors (DNAM-1, NTB-A, 2B4, CD2) and exhibit a mature/adaptive phenotype (CD57hi, NKG2Chi, LILRB1hi, FcRγlo, Syklo). Furthermore, TIGIT+ NK cells had increased responses to mock-infected and HIV-infected autologous CD4+ T cells, and to PMA/ionomycin, cytokine stimulation and the K562 cancer cell line.ConclusionsTIGIT expression is increased on NK cells from untreated HIV+ individuals. Although TIGIT does not participate directly in NK cell recognition of HIV, it marks a population of mature/adaptive NK cells with increased functional responses.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 17-17 ◽  
Author(s):  
Ryan P Sullivan ◽  
Jeffrey W Leong ◽  
Stephanie E Schneider ◽  
Rizwan Romee ◽  
Veronika Sexl ◽  
...  

Abstract Introduction Natural Killer (NK) cells are lymphocytes that are important for early host defense against infectious pathogens and malignant transformation. NK cells differentiate from the CLP in the bone marrow, where they are identified by markers such as CD56 and NKp46 in humans, and NK1.1, CD122, and NKp46 in mice. NK cells further mature in the periphery, and this maturation is essential for NK cell function, as both NK cell cytotoxicity and IFN-g production are dependent upon maturation. NK cell maturation is distinguished by surface marker transitions, including CD56bright to CD56dim in humans, and loss of CD27 expression in mice. However, the factors controlling NK cell differentiation and maturation are incompletely understood. We hypothesized that the transcription factor Myb had a role in this process, due to its high expression in immature NK cells and subsequent loss upon maturation. miRNAs are a family of small RNA molecules that control a wide variety of cellular processes via binding to target sites in the 3'UTR of messenger RNAs and downregulate protein production. The miR-15/16 family is very highly expressed in NK cells, and directly targets the 3'UTR of Myb. We hypothesized that a miR-15a/16-1KO mouse would have NK cell-intrinsic alterations in Myb levels, and would serve as a model of Myb upregulation. Here, we use lentiviral overexpression in primary human and mouse NK cells, as well as an in vitro human NK cell differentiation system, to demonstrate that Myb has critical roles in the NK cell differentiation and maturation processes. Furthermore, we generate a novel mouse model of miR-15/16 deficiency, and show that miR-15/16 is critically important for the regulation of Myb levels, and disruption of miR-15/16 prevents appropriate NK cell maturation. Results and Conclusions In order to investigate the role of Myb in NK cells, we transduced human NK cells, and cultured them in vitro. After 5 days of culture, GFP+ NK cells overexpressing Myb remained CD56bright (84±3 v. 6±2%, p<0.01), whereas NK cells expressing GFP only had differentiated to CD56dim (16±2 v. 94±3%, p<0.001). Mouse CD27+ NK cells were transduced with the same viruses, and adoptively transferred and allowed to mature for 7 days in their new hosts. 0% of NK cells overexpressing Myb matured to CD27-, while 11% of GFP only matured, and 22% of NK cells with knockdown of Myb matured to CD27-. Thus, cells overexpressing Myb have a block in maturation, and Myb downregulation is essential for complete NK cell maturation. To further investigate the role of Myb, we lentivirally transduced and cultured CD34+ progenitors in NK cell differentiation conditions. We found that cells overexpressing Myb had an increased percentage of immature CD56bright NK cells, which arose with more rapid kinetics (91±8 v. 28±16%, p<0.001 at day 14) [Fig. 1]. However, at later time points, cells overexpressing Myb failed to differentiate from CD56bright to the more mature CD56dim NK cells (8±6 v. 64±11%, p<0.01 at day 21). In contrast, CD34 cells transduced with an shRNA directed against Myb, differentiated to CD56dim NK cells more rapidly than control cells (90±7 v. 65±11, p<0.05 at day 21). Therefore, Myb drives initial NK cell differentiation, but prevents final maturation of NK cells. We found that Myb is a direct target of miR-15/16, as overexpression of miR-15/16 reduces the signal of luciferase fused to the 3'UTR of Myb by 50% (p<0.001), while a sponge directed against miR-15/16 increases signal by 40% (p<0.001). Therefore, we generated a novel mouse model of NK cell-specific miR-15a/16-1 knockout driven by NKp46 (Ncr1), and confirmed that Myb expression was increased in miR-15a/16-1KO NK cells (9-fold in CD27+ NK cells, p<0.05). No early differentiation phenotype was observed, because Cre is expressed later, after NK cell lineage determination. In contrast, these mice lacked mature NK cells (31±4 v 62±6 %CD27- of splenic NK, p<0.01, Fig. 2). Additionally, miR-15a/16-1 overexpression in human CD34+ cells recapitulates the phenotype of Myb knockdown, establishing a direct link between miR-15/16 and Myb [Fig. 1]. Therefore, miR-15/16 controls Myb expression in a cell-intrinsic manner, and thereby directs NK cell differentiation and maturation. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Matteo Santoni ◽  
Federica Maggi ◽  
Maria Beatrice Morelli ◽  
...  

Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A893-A893
Author(s):  
Laurent Gauthier ◽  
Angela Virone-Oddos ◽  
Angela Virone-Oddos ◽  
Jochen Beninga ◽  
Benjamin Rossi ◽  
...  

BackgroundThere is a clear need for targeted therapies to treat acute myeloid leukemia (AML), the most common acute leukemia in adults. CD123 (IL-3 receptor alpha chain) is an attractive target for AML treatment.1 However, cytotoxic antibody targeting CD123 proved insufficiently effective in a combination setting in phase II/III clinical trials.2 T-cell engagers targeting CD123 displayed some clinical efficacy but were often associated with cytokine release syndrome and neurotoxicity.3 Interest in the use of NK cells for therapeutic interventions has increased in recent years, as a potential safer alternative to T cells. Several NK-cell activating receptors, such as CD16a, NKG2D, and the natural cytotoxicity receptors NKp30 and NKp46, can be targeted to induce antitumor immunity. We previously reported the development of trifunctional NK-cell engagers (NKCEs) targeting a tumor antigen on cancer cells and co-engaging NKp46 and CD16a on NK cells.4MethodsWe report here the design, characterization and preclinical development of a novel trifunctional NK cell engager (NKCE) targeting CD123 on AML cells and engaging the activating receptors NKp46 and CD16a on NK cells. The CD123 NKCE therapeutic molecule was engineered with humanized antibodies targeting NKp464 and CD123.5 We compared CD123-NKCE and a cytotoxic ADCC-enhanced antibody (Ab) targeting CD123, in terms of antitumor activity in vitro, ex vivo and in vivo. Pharmacokinetic, pharmacodynamic and safety profile of CD123-NKCE were evaluated in non-human primate (NHP) studies.ResultsThe expression of the high affinity Fc gamma receptor CD64 on patient-derived AML cells inhibited the ADCC of the Ab targeting CD123 in vitro and ex vivo, but not the antitumor activity of CD123-NKCE. CD123-NKCE had potent antitumor activity against primary AML blasts and AML cell lines, promoted strong NK-cell activation and induced cytokine secretion only in the presence of AML target cells. Its antitumor activity in mouse model was greater than that of the comparator antibody. Moreover, CD123-NKCE had strong and prolonged pharmacodynamic effects in NHP when used at very low doses, was well-tolerated up to high 3 mg/kg dose and triggered only minor cytokine release.ConclusionsThe data for activity, safety, pharmacokinetics, and pharmacodynamics provided here demonstrate the superiority of CD123-NKCE over comparator cytotoxic antibody, in terms of antitumor activity in vitro, ex vivo, in vivo, and its favorable safety profile, as compared to T-cell therapies. These results constitute proof-of-principle for the efficacy of CD123-NKCE for controlling AML tumors in vivo, and provide consistent support for their clinical development.ReferencesEhninger A, Kramer M, Rollig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J 2014;4:e218.Montesinos P, Gail J Roboz GJ, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia 2021;35(1):62–74.Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021;137(6):751–762.Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019;177(7):1701–13.Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009;5:31–42.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii194-ii195
Author(s):  
Nazanin Majd ◽  
Maha Rizk ◽  
Solveig Ericson ◽  
Kris Grzegorzewski ◽  
Sharmila Koppisetti ◽  
...  

Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with dismal prognosis. Recent advances of immunotherapy in cancer have sparked interest in the use of cell therapy for treatment of GBM. Active transfer of Natural Killer (NK) cells is of particular interest in GBM because NK cells are capable of exerting anti-tumor cytotoxicity without the need for antigen presentation and sensitization, processes that are impaired in GBM. CYNK-001 is an allogeneic, off-the-shelf product enriched for CD56+/CD3- NK cells expanded from placental CD34+ cells manufactured by Celularity. Here, we demonstrate in vitro cytotoxicity of CYNK-001 against several GBM lines and its in vivo anti-tumor activity in a U87MG orthotopic mouse model via intracranial administration resulting in 94.5% maximum reduction in tumor volume. We have developed a phase I window-of-opportunity trial of CYNK-001 in recurrent GBM via intravenous (IV) and intratumoral (IT) routes. In the IV cohort, subjects receive cyclophosphamide for lymphodepletion followed by 3-doses of IV CYNK-001 weekly. In the IT cohort, subjects undergo placement of an IT catheter with an ommaya reservoir followed by 3-doses of IT CYNK-001 weekly. Patients are monitored for 28-days after last infusion for toxicity. Once maximum safe dose (MSD) is determined, patients undergo IV or IT treatments at MSD followed by surgical resection and the tumor tissue will be analyzed for NK cell engraftment and persistence. We will utilize a 3 + 3 dose de-escalation design (maximum n=36). Primary endpoint is safety and feasibility. Secondary endpoints are overall response rate, duration of response, time to progression, progression free survival and overall survival. Main eligibility criteria include age ≥18, KPS ≥60, GBM at first or second relapse with a measurable lesion on ≤2mg dexamethasone. This is the first clinical trial to investigate CYNK-001 in GBM and will lay the foundation for future NK cell therapy in solid tumors.


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4081-4088 ◽  
Author(s):  
Ting Zhang ◽  
Shuxun Liu ◽  
Pengyuan Yang ◽  
Chaofeng Han ◽  
Jianli Wang ◽  
...  

Abstract Tissue microenvironment and stroma-derived extracellular matrix (ECM) molecules play important roles in the survival and differentiation of cells. Mouse natural killer (NK) cells usually die within 24 hours once isolated ex vivo. Exogenous cytokines such as interleukin-12 (IL-12) and IL-15 are required to maintain the survival and activity of mouse NK cells cultured in vitro. Whether and how ECM molecules such as fibronectin can support the survival of NK cells remain unknown. We demonstrate that fibronectin, just like IL-15, can maintain survival of mouse NK cells in vitro. Furthermore, we show that fibronectin binds to the CD11b on NK cells, and then CD11b recruits and activates Src. Src can directly interact with β-catenin and trigger nuclear translocation of β-catenin. The activation of β-catenin promotes extracellular signal-related kinase (ERK) phosphorylation, resulting in the increased expression of antiapoptotic protein B-cell leukemia 2 (Bcl-2), which may contribute to the maintenance of NK-cell survival. Consistently, fibronectin cannot maintain the survival of CD11b− NK cells and β-catenin–deficient NK cells in vitro, and the number of NK cells is dramatically decreased in the β-catenin–deficient mice. Therefore, fibronectin can maintain survival of mouse NK cells by activating ERK and up-regulating Bcl-2 expression via CD11b/Src/β-catenin pathway.


Sign in / Sign up

Export Citation Format

Share Document