scholarly journals Phosphoantigen-activated Vγ2Vδ2 T cells antagonize IL-2–induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection

Blood ◽  
2009 ◽  
Vol 113 (4) ◽  
pp. 837-845 ◽  
Author(s):  
Guangming Gong ◽  
Lingyun Shao ◽  
Yunqi Wang ◽  
Crystal Y. Chen ◽  
Dan Huang ◽  
...  

Abstract Although Foxp3+ T regulatory cells (Tregs) are well documented for their ability to suppress various immune cells, T-cell subsets capable of counteracting Tregs have not been demonstrated. Here, we assessed phosphoantigen-activated Vγ2Vδ2 T cells for the ability to interplay with Tregs in the context of mycobacterial infection. A short-term IL-2 treatment regimen induced marked expansion of CD4+CD25+Foxp3+ T cells and subsequent suppression of mycobacterium-driven increases in numbers of Vγ2Vδ2 T cells. Surprisingly, activation of Vγ2Vδ2 T cells by adding phosphoantigen Picostim to the IL-2 treatment regimen down-regulated IL-2–induced expansion of CD4+CD25+Foxp3+ T cells. Consistently, in vitro activation of Vγ2Vδ2 T cells by phosphoantigen plus IL-2 down-regulated IL-2–induced expansion of CD4+CD25+Foxp3+ T cells. Interestingly, anti–IFN-γ–neutralizing antibody, not anti–TGF-β or anti–IL-4, reduced the ability of activated Vγ2Vδ2 T cells to down-regulate Tregs, suggesting that autocrine IFN-γ and its network contributed to Vγ2Vδ2 T cells' antagonizing effects. Furthermore, activation of Vγ2Vδ2 T cells by Picostim plus IL-2 treatment appeared to reverse Treg-driven suppression of immune responses of phosphoantigen-specific IFNγ+ or perforin+ Vγ2Vδ2 T cells and PPD-specific IFNγ+αβ T cells. Thus, phos-phoantigen activation of Vγ2Vδ2 T cells antagonizes IL-2–induced expansion of Tregs and subsequent suppression of Ag-specific antimicrobial T-cell responses in mycobacterial infection.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112242 ◽  
Author(s):  
Ghanashyam Sarikonda ◽  
Georgia Fousteri ◽  
Sowbarnika Sachithanantham ◽  
Jacqueline F. Miller ◽  
Amy Dave ◽  
...  


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3515-3515
Author(s):  
Dario Sangiolo ◽  
Noela Jordaney ◽  
Giulia Mesiano ◽  
Paola Circosta ◽  
Angela Elia ◽  
...  

Abstract Adoptive immunotherapy strategies enrolling T regulatory cells (Tregs) might have a great potential in modulating donor T cells alloreactivity after Hematopoetic Cell Transplant (HCT). In murine models of HCT Tregs were shown to promote engraftment and contribute controlling graft versus host disease (GVHD) while still not conclusive data are available on humans. Ex-vivo engineering conventional CD4+ T cells to over-express the transcription factor FOXP3 is an intriguing approach to overcome the main difficulty of obtaining large amount of Tregs for experimental studies. Reports of retrovirus-mediated expression of FOXP3 not consistently resulted in functional Tregs while, recently, a lentivirus-mediated strategy was successfully reported to result in homogeneous and stable expression of FOXP3. Lentiviral transduced Tregs were able to suppress a polyclonal proliferation of CD4 purified lymphocytes stimulated with soluble Ab anti-CD3. In our study we generated lentiviral engineered Tregs (eng-Tregs) and investigated their inhibitory effect on unselected lymphocytes alloreactivity across major HLA barriers. Within the bulk lymphocytes population we separately tracked the suppressive influence of eng-Tregs on both CD4+ and CD8+ T cells. To obtain eng-Tregs, CD4+ T cells were purified from healthy donors and transduced with a bidirectional lentiviral vector encoding for FOXP3 and the truncated Nerve Growth Factor Receptor (ΔNGFR). Prior to transduction CD4+ cells were activated for 72 hours with IL2 (100U/ml), IL7 (20ng/ml) and soluble Ab anti-CD3 (200 ng/ml, only IL2 was added to the culture medium after transduction. The lentiviral transduction efficiency ranged from 8 to 25%, ΔNGFR+ T cells were positively selected and tested for their ability to suppress a mixed lymphocyte reaction across major HLA barriers. Effector peripheral blood mononuclear cells (PBMC) were collected from the same donors from whom eng-Tregs were generated. Effector PBMC were stained with CFSE in oder to separately track the alloreactive proliferation of both CD8+ and CD4+ subsets of T cells. Eng-Tregs were added on day 0 and HLA-mismatched irradiated PBMC were used as stimulators; both eng-Tregs and irradiated stimulators were used in a 1:1 ratio with the effectors. No cytokines or additional soluble stimulators were added to the MLR culture medium. The alloreactive proliferation of T cell subsets was determined by evaluating the logarithmic decrease of CFSE fluorescence intensity. The flow cytometry analysis on day +7 showed that alloreactive proliferation of both CD4+ and CD8+ effector cells was significantly inhibited (>75%) by the addition of eng-Tregs compared to controls. In order to rule out a possible role played by the naturally present Tregs (nat-Tregs), the effectors were depleted of the CD4+CD25high subpopulation before the MLR started. The observed alloreactive proliferation was higher after the depletion of nat-Tregs but still it could be significantly inhibited by the addition of eng-Tregs. Eng-Tregs did not significantly expanded when cultured in vitro (up to 2 weeks) with IL2 (100U/ml) but maintained a stable expression of the transgene and retained their suppressive capacity. Our data show that lentiviral engineered Tregs can efficiently down-modulate both CD4+ and CD8+ T cell alloreactivity across major HLA barriers. The observed independence from the presence of nat-Tregs might be important in future experimental HCT settings where the adoptive infusion of eng-Tregs might encounter a great variability in the number and activity of recipient’s nat-Tregs. The possibility of transducing a potentially unlimited number of CD4+ cells makes this strategy appealing for future pre-clinical studies to control GVHD in HCT settings.



2001 ◽  
Vol 75 (5) ◽  
pp. 2107-2118 ◽  
Author(s):  
Ting Liu ◽  
Thomas J. Chambers

ABSTRACT Viral encephalitis caused by neuroadapted yellow fever 17D virus (PYF) was studied in parental and gamma interferon (IFN-γ)-deficient (IFN-γ knockout [GKO]) C57BL/6 mice. The T-cell responses which enter the brain during acute fatal encephalitis of nonimmunized mice, as well as nonfatal encephalitis of immunized mice, were characterized for relative proportions of CD4+ and CD8+cells, their proliferative responses, and antigen-specific expression of cytokines during stimulation in vitro. Unimmunized mice accumulated only low levels of T cells within the brain during fatal disease, whereas the brains of immunized mice contained higher levels of both T-cell subsets in response to challenge, with CD8+ cells increased relative to the CD4+ subset. The presence of T cells correlated with the time at which virus was cleared from the central nervous system in both parental and GKO mice. Lymphocytes isolated from the brains of challenged immunized mice failed to proliferate in vitro in response to T-cell mitogens or viral antigens; however, IFN-γ, interleukin 4 (IL-4), and, to a lesser extent, IL-2 were detectable after stimulation. The levels of IFN-γ, but not IL-2 or IL-4, were augmented in response to viral antigen, and this specificity was detectable in the CD4+ compartment. When tested for the ability to survive both immunization and challenge with PYF virus, GKO and CD8 knockout mice did not differ from parental mice (80 to 85% survival), although GKO mice exhibited a defect in virus clearance. In contrast, CD4 knockout and Igh-6 mice were unable to resist challenge. The data implicate antibody in conjunction with CD4+ lymphocytes bearing a Th1 phenotype as the critical factors involved in virus clearance in this model.



2021 ◽  
Vol 11 ◽  
Author(s):  
Philipp Adams ◽  
Gilles Iserentant ◽  
Jean-Yves Servais ◽  
Linos Vandekerckhove ◽  
Guido Vanham ◽  
...  

Antiretroviral therapy (ART) is not curative as HIV-1 persists in long-lived viral reservoirs. Consequently, patients are dependent on life-long drug adherence with possible side effects. To overcome these limitations strategies of a functional cure aim at ART free viral remission. In this study, we sought to identify detailed subsets of anti-viral CD8+ T cell immunity linked to natural long-term control of HIV-1 infection. Here, we analyzed HIV controllers and ART suppressed progressors for in vitro viral suppressive capacity (VSC) at baseline and after peptide stimulation. Functional properties and phenotypes of CD8+ T cells were assessed by IFN-γ ELISPOT and 18 color flow cytometry. HIV controllers showed significantly increased suppression at baseline as well as after peptide stimulation. IFN-γ secretion and the proliferation marker Ki67 positively correlated with VSC. Moreover, the detailed phenotype of three distinct multifunctional memory CD8+ T cell subsets were specific traits of HIV controllers of which two correlated convincingly with VSC. Our results underline the importance of multifunctional CD8+ T cell responses during natural control. Especially the role of CXCR5 expressing cytotoxic subsets emphasizes potential surveillance in sites of reservoir persistence and demand further study.



2007 ◽  
Vol 75 (5) ◽  
pp. 2244-2252 ◽  
Author(s):  
Patricia Ngai ◽  
Sarah McCormick ◽  
Cherrie Small ◽  
Xizhong Zhang ◽  
Anna Zganiacz ◽  
...  

ABSTRACT Gamma interferon (IFN-γ) is a key cytokine in host defense against intracellular mycobacterial infection. It has been believed that both CD4 and CD8 T cells are the primary sources of IFN-γ. However, the relative contributions of CD4 and CD8 T-cell subsets to IFN-γ production and the relationship between CD4 and CD8 T-cell activation have not been examined. By using a model of pulmonary mycobacterial infection and various immunodetection assays, we found that CD4 T cells mounted a much stronger IFN-γ response than CD8 T cells at various times after mycobacterial infection, and this pronounced IFN-γ production by CD4 T cells was attributed to both greater numbers of antigen-specific CD4 T cells and a greater IFN-γ secretion capacity of these cells. By using major histocompatibility complex class II-deficient or CD4-deficient mice, we found that the lack of CD4 T cells did not negatively affect primary or secondary CD8 T-cell IFN-γ responses. The CD8 T cells activated in the absence of CD4 T cells were capable of immune protection against secondary mycobacterial challenge. Our results suggest that, whereas both CD4 and CD8 T cells are capable of IFN-γ production, the former represent a much greater cellular source of IFN-γ. Moreover, during mycobacterial infection, CD8 T-cell IFN-γ responses and activation are independent of CD4 T-cell activation.



Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2033-2033
Author(s):  
Hilit Levy-Barazany ◽  
Liat Pinkas ◽  
Galina Rodionov ◽  
Nitzan Marelly ◽  
Michal Tzadok ◽  
...  

Abstract Graft versus host disease (GvHD) proceeds to be the Achilles' heel of hematopoietic stem cell transplantation, with clinicians continue facing a classic conflict: too much GvHD and the patient is at risk for transplant-related mortality and decreased quality of life; too little GvHD and the patient is at increased risk of relapse of their malignant disease. T cells and antigen presenting cells (APCs) are major components of the hematopoietic G-CSF mobilized peripheral blood cells (PBCs) graft. While GvHD is T cell mediated, the APCs are required for the initiation and maintenance of the GvHD. To reduce the risk for GvHD, grafts are sometimes depleted of their T cells, however, while preventing GvHD, the critically important attributes of graft versus leukemia (GvL) effect and engraftment are reduced significantly. Novel strategies that aim to abrogate or ameliorate GvHD, while preserving engraftment and GvL are of great need. A short incubation (2hr) of G-CSF mobilized PBCs with multimeric Fas ligand (i.e. ApoGraft) selectively induces apoptosis in T cell subsets and APCs (Panels A and B), but not in CD34+ progenitor cells (data not shown). FasL treatment preferentially induces apoptosis in mature T cell subsets which express high levels of Fas (CD95), such as T stem cell memory (TSCM), T central memory (TCM), and T effector memory (TEM) cells, as well as the pro-inflammatory T cell subtypes TH1 and TH17 cells, while no apoptotic signal is detected in the non-expressing CD95 naïve T cells (Panel A). The expression of T cells and APCs activation markers; CD25 and HLA-DR, respectively, is significantly reduced following apoptotic challenge in vitro (Panel C), as well as in transplanted mice (data not shown). Furthermore, upon an activation stimulus with anti CD3/CD28 beads in vitro, ApoGraft derived T cells secrete lower levels of IFN-γ, than G-CSF mobilized PBCs derived T cells (Panel D). To gain deeper understanding of the kinetics of GvHD development in vivo, NSG mice were transplanted with ApoGraft or G-CSF mobilized PBCs. Homing, expansion and differentiation of human leukocytes subtypes within the mice bone marrow, spleen and blood, were monitored 3, 7 and 14 days post transplantation. Decreased levels of T and B cells infiltration and expansion were detected in the spleen (Panels E and F), suggesting reduced formation of allo-reactive T cell clones. Reduced proliferation of these cells was associated with lower levels of IFN-γ secreted to the plasma (Panel H) and was in correlation with reduced GvHD and prolonged survival of the ApoGraft transplanted mice (Panel G). Importantly, we have previously demonstrated both in-vitro and in-vivo that ApoGraft has similar GvL and stem cell engraftment capabilities, compared to control G-CSF mobilized PBCs (data not shown). In conclusion, in contrast to conventional T- cell depletion methods, ApoGraft, an ex-vivo FasL-treated graft, affects both the T-cells and APCs, leading to reduced GvHD, while maintaining GvL and engraftment potential (Panel I). ApoGraft is currently being evaluated in a Phase I/II clinical trial (NCT02828878) in subjects with hematologic malignancies undergoing matched related allo-HSCT. Figure. Figure. Disclosures Levy-Barazany: Cellect Biotherapeutics Ltd: Employment. Pinkas:Cellect Biotherapeutics Ltd: Employment. Rodionov:Cellect Biotherapeutics Ltd: Employment. Marelly:Cellect Biotherapeutics Ltd: Employment. Tzadok:Cellect Biotherapeutics Ltd: Employment. Bakimer:Cellect Biotherapeutics Ltd: Employment. Yarkoni:Cellect Biotherapeutics Ltd: Employment. Peled:Cellect Biotherapeutics Ltd: Consultancy. Zuckerman:Cellect Biotherapeutics Ltd: Consultancy.



Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1210-1210
Author(s):  
Antonio Curti ◽  
Simona Pandolfi ◽  
Michela Aluigi ◽  
Barbara Valzasina ◽  
Alessandro Isidori ◽  
...  

Abstract The expression of the catalytic enzyme of tryptophan, indoleamine 2,3-dyoxigenase (IDO) in different cellular subsets, including solid tumors, has been recently identified as a T-cell inhibitory effector pathway. Here, we show that unlikely normal hematopoietic CD34+ cells expressing IDO only upon stimulation with IFN-γ, acute myeloid leukemia (AML) cells constitutively express IDO and inhibit allogeneic T-cell proliferation. IDO expression correlates with increased CD4+CD25+Foxp3+ T cells in AML patients at diagnosis. In vitro, IDO+ AML cells increase the percentage and the absolute number of CD4+CD25bright T cells, also expressing surface CTLA-4 and Foxp3 mRNA. The addition of the IDO-inhibitor, 1-methyl tryptophan (1-MT), completely abrogates such increase. Purified CD4+CD25+ T cells obtained from coculture with IDO+ AML cells are not proliferating and unable to produce IL-2. They also inhibit naive T-cell proliferation and Th1 skewing. Co-culture with IDO+ AML cells results in the conversion of CD4+CD25− into CD4+CD25+ T cells and the addition of 1-MT completely abrogates this effect. In mice, intrasplenic injection of IDO-expressing leukemia/lymphoma A20 cells induces the increase of CD4+CD25+ T cells, which can be blocked by 1-MT treatment. These data suggest that AML cells have the capacity to directly increase a population of T regulatory cells through the constitutive expression of the functionally active form of IDO. IDO expression can be regarded as a novel mechanism of leukemia escape from immune control and its inhibition may represent a novel anti-leukemia therapeutic strategy.



2006 ◽  
Vol 80 (12) ◽  
pp. 5777-5789 ◽  
Author(s):  
Wen Li ◽  
William R. Green

ABSTRACT LP-BM5, a retroviral isolate, induces a disease featuring retrovirus-induced immunodeficiency, designated murine AIDS (MAIDS). Many of the features of the LP-BM5-induced syndrome are shared with human immunodeficiency virus-induced disease. For example, CD4 T cells are critical to the development of MAIDS. In vivo depletion of CD4 T cells before LP-BM5 infection rendered genetically susceptible B6 mice MAIDS resistant. Similarly, MAIDS did not develop in B6.nude mice. However, if reconstituted with CD4 T cells, B6.nude mice develop full-blown MAIDS. Our laboratory has shown that the interaction of B and CD4 T cells that is central to MAIDS pathogenesis requires ligation of CD154 on CD4 T cells with CD40 on B cells. However, it is not clear which additional characteristics of the phenotypically and functionally heterogeneous CD4 T-cell compartment are required. Here, in vivo adoptive transfer experiments using B6.nude recipients are employed to compare the pathogenic abilities of CD4 T-cell subsets defined on the basis of cell surface phenotypic or functional differences. Th1 and Th2 CD4 T cells equally supported MAIDS induction. The rare Thy1.2 − CD4 subset that expands upon LP-BM5 infection was not necessary for MAIDS. Interestingly, CD45RBlow CD4 T cells supported significantly less disease than CD45RBhigh CD4 T cells. Because the decreased MAIDS pathogenesis could not be attributed to inhibition by CD45RBlow CD25+ natural T-regulatory cells, an intrinsic property of the CD45RBlow cells appeared responsible. Similarly, there was no evidence that natural T-regulatory cells played a role in LP-BM5-induced pathogenesis in the context of the intact CD4 T-cell population.



2003 ◽  
Vol 198 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Siobhán C. Cowley ◽  
Karen L. Elkins

A variety of data suggest that in vivo production of interferon (IFN)-γ is necessary, but not sufficient, for expression of secondary protective immunity against intracellular pathogens. To discover specific IFN-γ–independent T cell mediated mechanisms, we took advantage of an in vitro culture system that models in vivo immune responses to the intracellular bacterium Francisella tularensis live vaccine strain (LVS). LVS-immune lymphocytes specifically controlled 99% of the growth of LVS in wild-type murine bone marrow–derived macrophages. Surprisingly, LVS-immune lymphocytes also inhibited LVS intracellular growth by as much as 95% in macrophages derived from IFN-γ receptor knockout (IFNγR KO) mice. CD8+ T cells, and to a lesser degree CD4+ T cells, controlled LVS intracellular growth in both wild-type and IFNγR KO macrophages. Further, a unique population of Thy1+αβ+CD4−CD8− cells that was previously suggested to operate during secondary immunity to LVS in vivo strongly controlled LVS intracellular growth in vitro. A large proportion of the inhibition of LVS intracellular growth in IFNγR KO macrophages by all three T cell subsets could be attributed to tumor necrosis factor (TNF) α. Thus, T cell mechanisms exist that control LVS intracellular growth without acting through the IFN-γ receptor; such control is due in large part to TNF-α, and is partially mediated by a unique double negative T cell subpopulation.



2020 ◽  
Vol 105 (6) ◽  
pp. 1851-1867 ◽  
Author(s):  
Sijie Fang ◽  
Shuo Zhang ◽  
Yazhuo Huang ◽  
Yu Wu ◽  
Yi Lu ◽  
...  

Abstract Purpose The purpose of this article is to investigate the characteristics of Th1-cell and Th17-cell lineages for very severe Graves orbitopathy (GO) development. Methods Flow cytometry was performed with blood samples from GO and Graves disease (GD) patients and healthy controls, to explore effector T-cell phenotypes. Lipidomics was conducted with serum from very severe GO patients before and after glucocorticoid (GC) therapy. Immunohistochemistry and Western blotting were used to examine orbital-infiltrating Th17 cells or in vitro models of Th17 polarization. Results In GD, Th1 cells predominated in peripheral effector T-cell subsets, whereas in GO, Th17-cell lineage predominated. In moderate-to-severe GO, Th17.1 cells expressed retinoic acid receptor-related orphan receptor-γt (RORγt) independently and produced interleukin-17A (IL-17A), whereas in very severe GO, Th17.1 cells co-expressed RORγt and Tbet and produced interferon-γ (IFN-γ). Increased IFN-γ–producing Th17.1 cells positively correlated with GO activity and were associated with the development of very severe GO. Additionally, GC therapy inhibited both Th1-cell and Th17-cell lineages and modulated a lipid panel consisting of 79 serum metabolites. However, in GC-resistant, very severe GO, IFN-γ–producing Th17.1 cells remained at a high level, correlating with increased serum triglycerides. Further, retro-orbital tissues from GC-resistant, very severe GO were shown to be infiltrated by CXCR3+ Th17 cells expressing Tbet and STAT4 and rich in triglycerides that promoted Th1 phenotype in Th17 cells in vitro. Conclusions Our findings address the importance of Th17.1 cells in GO pathogenesis, possibly promoting our understanding of the association between Th17-cell plasticity and disease severity of GO.



Sign in / Sign up

Export Citation Format

Share Document