scholarly journals The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth

Blood ◽  
2009 ◽  
Vol 114 (9) ◽  
pp. 1803-1812 ◽  
Author(s):  
Angela Pennisi ◽  
Wen Ling ◽  
Xin Li ◽  
Sharmin Khan ◽  
John D. Shaughnessy ◽  
...  

Myeloma bone disease is caused by uncoupling of osteoclastic bone resorption and osteoblastic bone formation. Bidirectional signaling between the cell-surface ligand ephrinB2 and its receptor, EphB4, is involved in the coupling of osteoblastogenesis and osteoclastogenesis and in angiogenesis. EphrinB2 and EphB4 expression in mesenchymal stem cells (MSCs) from myeloma patients and in bone cells in myelomatous bones was lower than in healthy counterparts. Wnt3a induced up-regulation of EphB4 in patient MSCs. Myeloma cells reduced expression of these genes in MSCs, whereas in vivo myeloma cell-conditioned media reduced EphB4 expression in bone. In osteoclast precursors, EphB4-Fc induced ephrinB2 phosphorylation with subsequent inhibition of NFATc1 and differentiation. In MSCs, EphB4-Fc did not induce ephrinB2 phosphorylation, whereas ephrinB2-Fc induced EphB4 phosphorylation and osteogenic differentiation. EphB4-Fc treatment of myelomatous SCID-hu mice inhibited myeloma growth, osteoclastosis, and angiogenesis and stimulated osteoblastogenesis and bone formation, whereas ephrinB2-Fc stimulated angiogenesis, osteoblastogenesis, and bone formation but had no effect on osteoclastogenesis and myeloma growth. These chimeric proteins had similar effects on normal bone. Myeloma cells expressed low to undetectable ephrinB2 and EphB4 and did not respond to the chimeric proteins. The ephrinB2/EphB4 axis is dysregulated in MM, and its activation by EphB4-Fc inhibits myeloma growth and bone disease.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3717-3717
Author(s):  
Xin Li ◽  
Wen Ling ◽  
Angela Pennisi ◽  
Yuping Wang ◽  
Sharmin Khan ◽  
...  

Abstract Abstract 3717 Human placenta has emerged as a valuable, uncontroversial source of transplantable cells for many cytotherapeutic purposes, including modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDAC) are mesenchymal like adherent cells isolated from postpartum human placenta and capable of supporting bone formation in vivo. Multiple myeloma (MM) is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. The aim of the study was to evaluate the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDAC in the SCID-rab model of MM-associated bone disease. SCID-rab system constructed by implanting a 4-weeks old rabbit bone into which primary human myeloma cells were directly injected (Yatta et al., Leukemia 2004; Yaccoby et al., Blood 2007). Bone disease was evaluated by measurements of bone mineral density (BMD) and X-rays. MM growth was determined by human immunoglobulin (hIg) ELISA and histologically. For in vivo tracking PDAC were transduced with a luciferase/GFP reporter in a lentiviral vector. SCID-rab mice engrafted with primary myeloma cells from 2 patients. Upon establishment of MM growth, PDAC (1×106 cells/bone) or vehicle were injected into the implanted myelomatous bone (Patient's 1, 5 mice/group; Patient's 2, 7 mice/group). While BMD of the implanted bones was significantly reduced in control hosts, intralesional PDAC cytotherapy significantly increased BMD of the implanted bones from pretreatment levels by >37% (p<0.01 versus control) and inhibited MM growth in the 2 sets of experiments (p<0.04). The bone anabolic effect of PDAC was associated with increased number of osteoblasts (p<0.003) and reduced number of osteoclasts (p<0.004). Intralesional PDAC cytotherapy also promoted bone formation in nonmyelomatous SCID-rab mice. Intralesional but not subcutaneous engraftment of PDAC inhibited bone disease and tumor growth in SCID-rab mice. In contrast to intra-bone injection in SCID-rab mice, intra-tumor injection of PDAC had no effect on subcutaneous growth of the H929 myeloma cell line in SCID mice (8 mice/group). Live-animal imaging revealed that the majority of PDAC disappeared from the injected bones within 4 weeks. To test their systemic behavior, PDAC were intravenously injected into 18 SCID-rab mice engrafted with H929 myeloma cells. The presences of PDAC in various organs were evaluated 1, 2 and 7 days after injection. Ex vivo bioluminescence analysis of the implanted myelomatous bones detected PDAC in two of five bones on day 1, in four of four bones on day 2, and in four of nine bones on day 7. Intravenously injected PDAC were also detected in lungs not in any other murine tissues. Immunohistochemical staining for GFP in myelomatous bone sections detected GFP-expressing PDAC in rabbit marrow areas infiltrated with myeloma cells, supporting bioluminescence analysis. Our study suggest that PDAC stimulate bone formation by acting as bystander cells that increase endogenous osteoblastogenesis and inhibit osteoclastogenesis, and that alteration of the bone marrow microenvironment by PDAC attenuates growth of MM. PDAC cytotherapy is a promising therapeutic approach for myeloma bone disease. Disclosures: Khan: Celgene Cellular Therapeutics: Research Funding. Heidaran:Celgene Cellular Therapeutics: Employment. Pal:Celgene Cellular Therapeutics: Employment. Zhang:Celgene Cellular Therapeutics: Employment. He:Celgene Cellular Therapeutics: Employment. Zeitlin:Celgene Cellular Therapeutics: Employment. Abbot:Celgene Cellular Therapeutics: Employment. Faleck:Celgene Cellular Therapeutics: Employment. Hariri:Celgene Cellular Therapeutics: Employment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3436-3436 ◽  
Author(s):  
Karin Vanderkerken ◽  
Satya Medicherla ◽  
Les Coulton ◽  
Benjamin Van Camp ◽  
Andy Protter ◽  
...  

Abstract The bone microenvironment plays a critical role in supporting the growth and survival of myeloma cells and the development of osteolytic bone disease. Signalling through p38 α MAPK mediates synthesis of myeloma cell survival factors by stromal cells; whereas, inhibiting p38 α MAPK reduces myeloma cell proliferation and inhibits osteoclast formation in vitro. However, it is unclear whether p38 α MAPK inhibition will prevent the growth and survival of myeloma cells and the bone disease in vivo. The aim of this study was to determine whether SCIO-469, a selective p38 α MAPK inhibitor, would inhibit myeloma growth and prevent the development of bone disease in the 5TMM syngeneic models of myeloma. Treatment of 5TMM cells, in vitro, with SCIO-469 resulted in a clear inhibition of p38 phosphorylation, as assessed by Western blotting and an inhibition up to 35% of stromal cell induced 5T33MM proliferation. Injection of 5T2MM murine myeloma cells into C57Bl/KaLwRij mice resulted in the growth of myeloma in bone and the development of bone disease characterized by increased osteoclast surface (p<0.05), a reduction in cancellous bone (p<0.01) and the presence of osteolytic bone lesions on x-ray (p<0.01). Treatment of 5T2MM-bearing mice with SCIO-469 (150mg/kg in the diet, therapeutical treatment from paraprotein detection) resulted in a 42% decrease in serum paraprotein and prevented development of osteolytic lesions (p<0.01). Injection of 5T33MM cells into C57Bl/KaLwRij mice also resulted in the development of myeloma but not associated bone disease. Treatment of 5T33MM-bearing mice from the time of tumor cell injection with SCIO-469 resulted in a decrease in serum paraprotein (8.8+/−1.4g/dl to 0.04+/− 0.03g/dl, p<0.001) and a reduction in the proportion of tumor cells in the bone marrow (67 +/− 8.1% to 1.09 +/− 0.58%, p<0.001). Kaplan-Meier analysis demonstrated an increase in disease-free survival (veh=27.5 days vs 96 days, p<0.001) after treatment of the mice with SCIO-469. These data demonstrate that targeting p38 α MAPK with SCIO-469 is associated with an anti-myeloma effect, which indirectly prevents the development of myeloma bone disease.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1697-1706 ◽  
Author(s):  
Sarah L. Dallas ◽  
I. Ross Garrett ◽  
Babatunde O. Oyajobi ◽  
Mark R. Dallas ◽  
Brendan F. Boyce ◽  
...  

We determined the effects of the potent bisphosphonate ibandronate in a murine model of human myeloma bone disease. In this model, bone lesions typical of the human disease develop in mice following inoculation of myeloma cells via the tail vein. Treatment with ibandronate (4 μg per mouse per day) significantly reduced the occurrence of osteolytic bone lesions in myeloma-bearing mice. However, ibandronate did not prevent the mice from developing hindlimb paralysis and did not produce a detectable effect on survival. There was no significant effect of ibandronate on total myeloma cell burden, as assessed by morphometric measurements of myeloma cells in the bone marrow, liver, and spleen, or by measurement of serum IgG2b levels. These results support clinical findings that bisphosphonates may be useful for the treatment of myeloma-associated bone destruction, but suggest that other therapies are also required to reduce tumor growth.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 8039-8039 ◽  
Author(s):  
Konstantinos Lontos ◽  
Juraj Adamik ◽  
Peng Zhang ◽  
Quanhong Sun ◽  
David Roodman ◽  
...  

8039 Background: Myeloma bone disease is characterized by osteoclast activation and long-term osteoblast suppression. We investigated if Semaphorin 4D (Sema4D; CD100) plays a role in these processes. Sema4D has been shown to be a potent osteoblast inhibitor (Negishi-Koga T et al, Nat Med. 2011). A study recently identified that the breast cancer cell line MDA-MB-231 utilizes Sema4D to create osteolysis (Yang Y et al, PLOS One 2016). There have been previous data that Sema4D is increased in the serum of myeloma patients (Terpos et al, Blood 2012) and that co-culturing myeloma cell lines with osteocytes increases the expression of Sema4D mRNA in both (Suvannasankha et al, Blood 2016). We sought to investigate if myeloma cells are using Sema4D to suppress bone formation and if they affect the levels of Sema4D produced by osteoclasts. Methods: We used lentivirus carrying shRNA for Sema4D or control (Scr) to knock down the level of the protein in the 5TGM1 murine myeloma cell line. Knockdown was verified by qPCR and Western Blot. We subsequently co-cultured the 5TGM1 cells with the MC3T3-subclone M4 (MC4) murine stromal cell line for 2 days, removed the myeloma cells and then differentiated the MC4 cells using ascorbic acid and β-glycerolphosphate. At day 5, we analyzed the cells for Runx2 (a critical gene for the differentiation of stromal cells into osteoblasts) expression utilizing qPCR. Also, we performed qPCR in primary osteoclast (OCL) mouse cells differentiating into OCL with RANKL with or without pre-treatment with myeloma-conditioned media for 3 days before the addition of RANKL. Results: When 5TGM1-Scr were co-cultured with MC4 cells the expression of Runx2 on day 5 was decreased (p=0.02). Strikingly, the 5TGM1-shSema4D cells when co-cultured with MC4s did not have the same effect and allowed the upregulation of Runx2 expression on day 5 (p=0.01). Myeloma-conditioned media increased Sema4D expression by OCL throughout the 5 days of differentiation 2 to 3-fold (p=0.01 for day 5). Conclusions: The myeloma cells seem to be utilizing Sema4D both directly and indirectly to inhibit bone formation. Targeted therapy against Sema4D may improve outcomes and fracture-free survival for multiple myeloma patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 844-844
Author(s):  
Angela Pennisi ◽  
Wen Ling ◽  
Xin Li ◽  
Jianmei Chen ◽  
Sharmin Khan ◽  
...  

Abstract Induction of osteolytic bone lesions in myeloma (MM) is caused by an uncoupling of osteoclastic bone resorption and osteoblastic bone formation. Recent studies indicate that in addition to role in cell adhesion, repulsion and neovascularization, bidirectional signaling between the cell surface molecules EphrinB2 and EphB4 also mediates the coupling between osteoblasts and osteoblasts. While mesenchymal stem cells (MSCs) and osteoblasts express the ligand EphrinB2 land its receptor, EphB4, osteoclasts and their precursors mainly express EphrinB2. Forward signaling in MSCs promotes osteogenic differentiation and reverse signaling in osteoclast precursors inhibits their differentiation. The aims of the study were to investigate whether the EphrinB2/Eph4 axis is dysregulated in MM osteoprogenitors and whether activation of this axis in myelomatous bone by EphrinB2-Fc or EphB4-Fc affects MM bone disease, angiogenesis and tumor growth. MSCs were generated from bone marrow of healthy donors (n=5) and patients with MM (n=13). Gene expression was determined by qRT-PCR. MSCs from MM patients had reduced expression of EphrinB2 (EFNB2) by 61±6% (p<0.02) and EphB4 by 60±10% (p<0.02) than expression levels of these molecules in MSCs from healthy donors. Expression of other EFN and EPH B genes were detected and similarly expressed in patients and donors MSCs. Differentiation of MSCs from MM patients into osteoblasts resulted in upregulation of EFNB2 and downregulation of EPHB4. MM cell lines and primary MM plasma cells expressed low to undetectable levels of this family of genes. We exploited our SCID-hu system for primary MM to study the consequences of activation of forward signaling by EphrinB2-Fc or reverse signaling by EphB4-Fc on MM-induced bone disease and MM growth. Twelve SCID-hu mice were engrafted with MM cells from a patient with active MM. Upon detection of MM growth (by human Ig ELISA) and bone disease (radiographically), hosts were locally treated with Fc (control), EphrinB2-Fc or EPHB4 (4 mice/group) for 4 weeks using Alzet pump that continually released 0.11 μg/hour of each compound. While in Fc-treated hosts BMD of the implanted bone was reduced by 8±3% from pretreatment levels, it was increased by EphrinB2-Fc and EPhB4-Fc by 15±8% (p<0.03 vs. Fc) and 2±1% (p<0.02 vs. Fc) from pretreatment levels, respectively. At experiment’s end levels of human Ig in mice sera were increased by 308±99% and 244±86% from pretreatment levels in Fc- and EphrinB2- Fc groups, respectively, while were reduced by 92±1% (p<0.02 vs. Fc) from pretreatment levels in EphB4-Fc group. In myelomatous bones, EphB4-Fc and EphrinB2-Fc increased the numbers of osteoblasts by >3 folds (p<0.004) while EphB4-Fc, but not EphrinB2-Fc, reduced osteoclast numbers by 5 folds (p<0.01 vs. Fc group). The numbers of CD34-reactive neovessels were reduced by 2 folds following treatment with EphB4-Fc (p<0.03) and were increased by 2.5 folds following treatment with EphrinB2-Fc (p<0.05). Our study suggests that downregulation of EphrinB2 and EhpB4 in MSCs from MM patients contributes to their impaired osteogenic differentiation and that treatment with EphrinB2-Fc or EphB4-Fc helps restore coupling of bone remodeling in myelomatous bones. The results also indicate that EphB4-Fc treatment is an effective approach to simultaneously inhibit MM and its associated bone disease.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2961-2961 ◽  
Author(s):  
Silvia Colucci ◽  
Giacomina Brunetti ◽  
Angela Oranger ◽  
Giorgio Mori ◽  
Francesca Sardone ◽  
...  

Abstract Abstract 2961 Reduced osteoblast activity contributes to the development of multiple myeloma-bone disease. Wingless-type (Wnt) signalling pathway is critical in osteoblastogenesis, and it is negatively regulated by molecules such as frizzled-related proteins (sFRPs), Dickkopf proteins (DKKs) and sclerostin. Myeloma cells are known to induce inhibition of osteoblastogenesis through Wnt antagonists such as DKK-1 and sFRP-2 and -3 whereas the role of sclerostin, an osteocyte-expressed negative regulator of bone formation, has not been yet investigated. We provide novel evidence showing sclerostin expression by myeloma cells from patients with multiple myeloma-bone disease and human myeloma cell lines (HMCLs). By means of a co-culture system of bone marrow stromal cells (BMSCs) and HMCLs, we demonstrated that sclerostin expression by myeloma cells and HMCLs is responsible for reduced expression of major osteoblastic specific proteins namely bone-specific alkaline phosphatase, collagen-type I, bone sialoprotein II and osteocalcin as well as decreased mineralized nodule formation and attenuated expression of member of the AP-1 transcription factor family (i.e. Fra-1, Fra-2 and Jun-D). The addition of a neutralizing anti-sclerostin antibody to our co-culture system can restore the above parameters, through the intranuclear accumulation of β-catenin in BMSCs. On the other hand, we demonstrated that sclerostin is also involved in inducing increased receptor activator of nuclear factor-k B ligand (RANKL) and decreased osteoprotegerin (OPG) expression in osteoblasts, contributing to the enhanced osteoclast activity occurring in patients with multiple myeloma-bone disease. Our data suggest that myeloma cells contribute to the suppression of bone formation through sclerostin secretion. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2679-2688 ◽  
Author(s):  
Madhav V. Dhodapkar ◽  
Etsuko Abe ◽  
Allison Theus ◽  
Marie Lacy ◽  
J. Kevin Langford ◽  
...  

Multiple myeloma is characterized by an accumulation of malignant plasma cells in the bone marrow coupled with an altered balance of osteoclasts and osteoblasts, leading to lytic bone disease. Although some of the cytokines driving this process have been characterized, little is known about the negative regulators. We show that syndecan-1 (CD 138), a heparan sulfate proteoglycan, expressed on and actively shed from the surface of most myeloma cells, induces apoptosis and inhibits the growth of myeloma tumor cells and also mediates decreased osteoclast and increased osteoblast differentiation. The addition of intact purified syndecan-1 ectodomain (1 to 6 nmol/L) to myeloma cell lines in culture leads to induction of apoptosis and dose-dependent growth inhibition, with concurrent downregulation of cyclin D1. The addition of purified syndecan-1 in picomolar concentrations to bone marrow cells in culture leads to a dose-dependent decrease in osteoclastogenesis and a smaller increase in osteoblastogenesis. In contrast to the effect on myeloma cells, the effect of syndecan-1 on osteoclastogenesis only requires the syndecan-1 heparan sulfate chains and not the intact ectodomain, suggesting that syndecan's effect on myeloma and bone cells occurs through different mechanisms. When injected in severe combined immune deficient (scid) mice, control-transfected myeloma cells (ARH-77 cells) expressing little syndecan-1 readily form tumors, leading to hind limb paralysis and lytic bone disease. However, after the injection of syndecan-1–transfected ARH-77 cells, the development of disease-related morbidity and lytic bone disease is significantly inhibited. Taken together, our data demonstrate, both in vitro and in vivo, that syndecan-1 has a significant beneficial effect on the behavior of both myeloma and bone cells and therefore may represent one of the central molecules in the regulation of myeloma pathobiology.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 812-812
Author(s):  
Claire M. Edwards ◽  
James R. Edwards ◽  
Seint T. Lwin ◽  
Gregory R. Mundy

Abstract Multiple myeloma is characterized by uncontrolled proliferation of myeloma cells within the bone marrow and the development of a severe osteolytic bone disease. In addition to a well characterized increase in osteoclastic bone resorption, myeloma bone disease is associated with a reduction in bone formation. Osteoblast differentiation and bone formation are regulated in vivo by canonical Wnt signaling and activation of β-catenin. Therefore increasing Wnt signaling in the bone microenvironment in multiple myeloma may prevent the development of myeloma bone disease. In support of this, we have previously demonstrated that activation of Wnt signaling with lithium chloride (LiCl) in the 5TGM1 murine model of myeloma reduces tumor burden and osteolytic bone disease. However, we also found that LiCl treatment increased subcutaneous (s.c.) tumor growth. This suggests that the reduction in tumor burden within the bone microenvironment may be an indirect effect mediated through the effects of LiCl to prevent myeloma bone disease. The aim of the current study was to determine the effect of specific molecular blockade of Wnt signaling in myeloma cells in vivo. 5TGM1-GFP myeloma cells were transfected by electroporation with either myc-tagged dominant negative TCF4 (DNTCF4) or pcDNA. Following stable selection by culture in G418, expression of DNTCF4 was confirmed by western blot for myc. No difference was found in the growth rates of 5TGM1-pcDNA or 5TGM1-DNTCF4 in vitro. Treatment with LiCl or Wnt3A had no significant effect on cell viability in vitro, but significantly increased β-catenin activity, as measured by TOPFLASH activity in 5TGM1-pcDNA cells. This increase was not observed in 5TGM1-DNTCF4, confirming that expression of DNTCF4 blocked Wnt signaling induced by LiCl in 5TGM1 myeloma cells. C57Bl/KaLwRij mice were inoculated with 5TGM1-pcDNA or 5TGM1-DNTCF4 cells by either intravenous (i.v.) or s.c. injection. Mice were treated from time of tumor cell inoculation with 200mg/kg/day LiCl or vehicle control (d.H20) by oral gavage for 28 days. I.v. inoculation of myeloma cells resulted in a significant increase in serum IgG2bκ concentrations and the proportion of GFP-positive cells in the bone marrow. A significant reduction in trabecular bone volume was also observed. MicroCT analysis of the tibia demonstrated that LiCl significantly increased trabecular bone volume in both 5TGM1-pcDNA and 5TGM1-DNTCF4 myeloma-bearing mice. LiCl significantly decreased serum IgG2bκ concentrations in both 5TGM1-pcDNA and 5TGM1-DNTCF4 myeloma-bearing mice, with a greater effect in 5TGM1-DNTCF4 myeloma-bearing mice. FACS analysis of GFP-positive cells demonstrated that LiCl significantly reduced tumor burden in the bone marrow in both 5TGM1-pcDNA and 5TGM1-DNTCF4 myeloma-bearing mice. However, following s.c inoculation, LiCl significantly increased s.c. tumor volume of 5TGM1-pcDNA tumors, but had no effect on 5TGM1-DNTCF4 s.c. tumor volume. Taken together these results demonstrate that the effect of increasing Wnt signaling in myeloma is dependent upon the microenvironment. By specific inhibition of β-catenin activity in myeloma cells combined with systemic stimulation of the Wnt signaling pathway, our results suggest that increasing Wnt signaling in myeloma in vivo has dual effects; firstly to enhance myeloma growth directly, and secondly to enhance osteoblast differentiation and thus indirectly reduce tumor burden in bone, highlighting the importance of the bone marrow microenvironment in regulating myeloma growth and survival.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 447-447
Author(s):  
Rakesh Bam ◽  
Angela Pennisi ◽  
Xin Li ◽  
Sharmin Khan ◽  
Yuping Wang ◽  
...  

Abstract Abstract 447 Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase of the TEC family of protein tyrosine kinases, is preferentially expressed in the hematopoietic cells and involved in B-lymphocytes survival and differentiation, and their migration towards SDF-1 gradient. BTK is also expressed in osteoclast precursors and plays indispensable role in osteoclastogenesis (Shinohara et al., Cell 2008). LFM-A13 is small molecule inhibitor of BTK and TEC, and can be tolerated even when animals are given daily dose of 100 mg/kg. The aims of the study were to investigate the effect of LFM-A13 on myeloma cell migration and growth in vitro, and on myeloma bone disease and tumor growth in the SCID-rab model. Our clinical gene expression profiling data indicate that in contrast to most myeloma cell lines, primary myeloma cells express BTK and that relative to normal plasma cells, BTK expression is upregulated in myeloma cells molecularly classified in the CD-1, CD-2, HY, LB and MF subtypes. Expression of BTK at the RNA and proteins levels in myeloma cells and osteoclast precursors was validated using qRT-PCR and Western Blot. To test effect on migration, myeloma cells expressing BTK and cell surface CXCR4 (n=5) were placed in the top of transwell inserts in the absence and presence of LFM-A13 (50 μM) and their migration towards SDF-1 (30 nM) was evaluated after 18 hours. SDF-1 induced migration of myeloma cells by >2.5 folds, an effect that was markedly inhibited by LFM-A13 (p<0.01). At similar concentration, this agent modestly reduced growth of BTK-expressing myeloma cells by 20%, assessed by MTT assay. LFM-A13 dose dependently inhibited osteoclast formation by 25% at 10 μM (p<0.0005) and by 80% at 40 μM (p<0.0001). In vivo, SCID-rab mice engrafted with a novel myeloma cell line, DAS, established through sequential passaging in this animal model (Xin et al., BJH 2007). DAS cells do not grow in culture, are molecularly classified as MF subtype and express high level of BTK. Upon establishment of myeloma growth, 2 weeks after tumor cell injection, hosts were intraperitoneally treated with 40 mg/kg LFM-A13 or vehicle (10 mice/group) twice a day for 3 weeks. Myeloma bone disease was evaluated by x-rays and analysis of bone mineral density (BMD). Tumor growth was analyzed by measurement of circulating human Ig and histologically. Whereas in the control group BMD of the implanted bone was reduced by 15±4% from pretreatment levels, it remained unchanged (0.8±4% change from pretreatment level) in the LFM-A13 treated hosts (p<0.01 versus control). X-ray radiographs revealed induction of osteolytic lesions in implanted bones of control hosts and that LFM-A13 effectively prevented these effects. LFM-A13 reduced the number of TRAP-expressing osteoclasts in myelomatous bones by >43% (p<0.004). At the end of the experiment, tumor burden was insignificantly lower in hosts treated with the LFM-A13 (Ig levels 42±15 and 19±5 μg/ml in control and LFM-A13 groups, respectively). We conclude that BTK is indispensable for SDF-1-indcued myeloma cell migration and stimulation of osteoclastogenesis, and that pharmacologic inhibition of BTK effectively inhibits myeloma-induced bone resorption and may interrupt with myeloma cell homing and metastasis to bone. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document