scholarly journals p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo

Blood ◽  
2010 ◽  
Vol 115 (9) ◽  
pp. 1835-1842 ◽  
Author(s):  
Matthias Canault ◽  
Daniel Duerschmied ◽  
Alexander Brill ◽  
Lucia Stefanini ◽  
Daphne Schatzberg ◽  
...  

AbstractPlatelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-α and GPV. We recently demonstrated that tumor necrosis factor-α converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37°C or 22°C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 990-990
Author(s):  
Matthias Canault ◽  
Daniel Duerschmied ◽  
Alexander Brill ◽  
Ian Sean Patten ◽  
Wolfgang Bergmeier ◽  
...  

Abstract Platelet transfusion is a lifesaving procedure widely used during surgery and chemotherapy. During storage platelets undergo several modifications that reduce their postransfusion survival and functionality. One important feature of this platelet storage lesion (PSL) is the shedding of surface glycoproteins such as GPIbα and GPV. We have recently demonstaretd that metalloproteinase inhibitors prevent storage-induced shedding of adhesion receptors, resulting in markedly improved postransfusion recovery and hemostatic function of platelets in mice. We now demonstrate that TNF-alpha converting enzyme (TACE/ADAM17) mediates receptor shedding from platelet stored for 18 hours at 37ºC or 22ºC. Using pharmacological inhibitors, we show that TACE -dependent shedding of GPIbα and GPV from both mouse and human platelets during storage required p38 MAP kinase signaling. In contrast, protein kinase C, Erk MAPK, and caspases were not involved. Inhibition of p38 MAPK during the storage of mouse platelets also markedly improved their posttransfusion recovery and hemostatic function in vivo. Moreover, p38 MAPK inhibition during storage of human platelets improved their adhesion to collagen under flow. Inhibition of p38 MAPK also prevented TACE-dependent shedding of GPIbα from platelets undergoing mitochondrial injury, a model for PSL. Phosphorylation of p38 MAPK was observed after platelet storage and mitochondrial injury. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.


2012 ◽  
Vol 123 (3) ◽  
pp. 147-159 ◽  
Author(s):  
Ting-Hsing Chao ◽  
Shih-Ya Tseng ◽  
Yi-Heng Li ◽  
Ping-Yen Liu ◽  
Chung-Lung Cho ◽  
...  

Cilostazol is an anti-platelet agent with vasodilatory activity that acts by increasing intracellular concentrations of cAMP. Recent reports have suggested that cilostazol may promote angiogenesis. In the present study, we have investigated the effect of cilostazol in promoting angiogenesis and vasculogenesis in a hindlimb ischaemia model and have also examined its potential mechanism of action in vitro and in vivo. We found that cilostazol treatment significantly increased colony formation by human early EPCs (endothelial progenitor cells) through a mechanism involving the activation of cAMP/PKA (protein kinase A), PI3K (phosphoinositide 3-kinase)/Akt/eNOS (endothelial NO synthase) and ERK (extracellular-signal-regulated kinase)/p38 MAPK (mitogen-activated protein kinase) signalling pathways. Cilostazol also enhanced proliferation, chemotaxis, NO production and vascular tube formation in HUVECs (human umbilical vein endothelial cells) through activation of multiple signalling pathways downstream of PI3K/Akt/eNOS. Cilostazol up-regulated VEGF (vascular endothelial growth factor)-A165 expression and secretion of VEGF-A in HUVECs through activation of the PI3K/Akt/eNOS pathway. In a mouse hindlimb ischaemia model, recovery of blood flow ratio (ipsilateral/contralateral) 14 days after surgery was significantly improved in cilostazol-treated mice (10 mg/kg of body weight) compared with vehicle-treated controls (0.63±0.07 and 0.43±0.05 respectively, P<0.05). Circulating CD34+ cells were also increased in cilostazol-treated mice (3614±670 compared with 2151±608 cells/ml, P<0.05). Expression of VEGF and phosphorylation of PI3K/Akt/eNOS and ERK/p38 MAPK in ischaemic muscles were significantly enhanced by cilostazol. Our data suggest that cilostazol produces a vasculo-angiogenic effect by up-regulating a broad signalling network that includes the ERK/p38 MAPK, VEGF-A165, PI3K/Akt/eNOS and cAMP/PKA pathways.


2008 ◽  
Vol 413 (3) ◽  
pp. 429-436 ◽  
Author(s):  
Yan Zeng ◽  
Heidi Sankala ◽  
Xiaoxiao Zhang ◽  
Paul R. Graves

Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.


2007 ◽  
Vol 28 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Giuseppe Pignataro ◽  
Robert Meller ◽  
Koichi Inoue ◽  
Andrea N Ordonez ◽  
Michelle D Ashley ◽  
...  

As clinical trials of pharmacological neuroprotective strategies in stroke have been disappointing, attention has turned to the brain's own endogenous strategies for neuroprotection. Recently, a hypothesis has been offered that modified reperfusion subsequent to a prolonged ischemic episode may also confer ischemic neuroprotection, a phenomenon termed ‘postconditioning’. Here we characterize both in vivo and in vitro models of postconditioning in the brain and offer data suggesting a biological mechanism for protection. Postconditioning treatment reduced infarct volume by up to 50% in vivo and by ∼30% in vitro. A duration of 10 mins of postconditioning ischemia after 10 mins of reperfusion produced the most effective postconditioning condition both in vivo and in vitro. The degree of neuroprotection after postconditioning was equivalent to that observed in models of ischemic preconditioning. However, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. The prosurvival protein kinases extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and Akt show prolonged phosphorylation in the cortex of postconditioned rats. Neuroprotection after postconditioning was inhibited only in the presence of LY294002, which blocks Akt activation, but not U0126 or SB203580, which block ERK and P38 MAP kinase activity. In contrast, preconditioning-induced protection was blocked by LY294002, U0126, and SB203580. Our data suggest that postconditioning may represent a novel neuroprotective approach for focal ischemia/reperfusion, and one that is mediated, at least in part, by the activation of the protein kinase Akt.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2512-2512
Author(s):  
Qing Yi ◽  
Siqing Wang ◽  
Jing Yang ◽  
Jianfei Wang ◽  
Michele Wezeman ◽  
...  

Abstract Dendritic cells (DCs) from cancer patients are functionally defective, however, molecular mechanisms underlying are still poorly understood. In this study, we used the murine 5TGM1 myeloma model to examine the effect and mechanism of tumor-derived factors on the differentiation and function of DCs. Myeloma cells (5TGM1) or tumor culture conditioning medium (TCCM) were shown to inhibit differentiation and function of BM-derived DCs (BMDCs), evidenced by the downregulated expression of DC-related surface molecules, decreased IL-12 but increased IL-10 secretion, and compromised capacity of the cells to activate allospecific T cells in vitro. Similar results were obtained with other murine myeloma cells MOPC-315 and MPC-11. Moreover, TCCM-treated BMDCs were inferior to normal BMDCs at priming tumor-specific humoral and cellular immune responses in vivo (in the 5TGM1 mouse model). Neutralizing antibodies against IL-6, IL-10, and TGF-β partially abrogated the effects. TCCM treatment activated p38 mitogen-activated protein kinase (MAPK) and JNK but inhibited extracellular signal-related kinase (ERK). Inhibiting p38 MAPK by three different specific inhibitors was found to restore the phenotype, cytokine secretion, and function of TCCM-treated BMDCs. Vaccinating mice with BMDCs obtained from cultures in which both TCCM and p38 inhibitor were added was as efficacious as normal BMDCs at inducing tumor-specific antibody, type-1 (IFN-γ) T-cell, and CTL responses. Thus, our results suggest that tumor-induced p38 MAPK activation and ERK inhibition in DCs may be a new mechanism for tumor evasion, and regulating these signaling pathways in vivo or during DC differentiation may provide new strategies for generating potent DC vaccines for immunotherapy of multiple myeloma and other tumors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 136-136
Author(s):  
Silvia S. Pierangeli ◽  
Mariano E. Vega-Ostertag ◽  
Xiaowei Liu

Abstract Background: Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been shown to play a fundamental role in antiphospholipid-induced up regulation of tissue factor (TF) expression and function in monocytes and in endothelial cells (ECs) and increased expression of intercellular adhesion molecule -1 (ICAM-1) in vitro. Those effects correlate with the thrombogenic and pro-inflammatory effects of aPL in vivo. However, It is not clear whether aPL-induceTF in vivo. Methods: To examine this question, we treated CD1 male mice, in groups of 4, with IgG from 3 patients with Antiphospholipid Syndrome (IgG-APS) or with control IgG from healthy controls (IgG-NHS), twice. Seventy-two hours after the first injection, the adhesion of leukocytes per capillary venule (#WBC) to EC in cremaster muscle (as an indication of EC activation in vivo), as well the size of an induced thrombus in the femoral vein of the mice were examined. Some mice were infused i.p. with 25 mg/kg of SB203580 (a p38 MAPK-specific inhibitor) 30 minutes prior to the each IgG-APS injection. TF activity was determined using a chromogenic assay that measures the conversion of factor X into Factor Xa, in homogenates of carotid artery, and in peritoneal cells of mice treated with IgG-APS or with IgG-NHS. Expression of TF and ICAM-1 was determined by cyto-ELISA on cultured HUVECs after treatment of the cells with IgG-APS or with IgG-NHS. Results: At the time of the surgical procedures, the mean aCL titer in the sera of the mice injected with IgG-APS was 73 ± 34 GPL. In vivo, IgG-APS increased significantly the #WBC adhering to EC, when compared to control mice (5.25 ± 0.96 vs 1.85 ± 0.72) and these effects were significantly reduced (2.1 ± 0.74), when mice were pre-treated with SB203580. IgG-APS increased significantly the thrombus size when compared to IgG-NHS-treated mice (3189 ± 558 μm2 vs 1468 ± 401 μm2) and SB203580 inhibited this effect by 65%. Treatment of the mice with IgG-APS also induced significantly increased TF function in peritoneal cells and in homogenates of carotid artery when compared to IgG-NHS-treated mice (17.5 ±11.1 pM vs. 0.8 ±0.2 pM and 8.31 ± 1.59 vs 0.69 ± 0.03, respectively). Pre-treatment of the mice with SB203580 abrogated completely those effects (0.61 ± 0.06 pM in peritoneal cells and 0.75 ± 0.28 pM in carotid artery preparations of mice treated with IgG-APS). Significant expression of TF and ICAM-1 was observed in vitro when HUVECs were treated with any of the three IgG-APS. TF upregulation and ICAM-1 expression were significantly reduced by pre-treatment of the cells with SB203580 (49–97% for TF and 25–69% for ICAM-1). Conclusions: The data show that IgG-APS up regulates TF function in vivo, and this correlates with an in vivo pro-inflammatory and pro-thrombotic effect. Importantly, those effects were abrogated in vivo by a p38 MAPK specific inhibitor. These findings may be important in designing new modalities of targeted therapies to treat thrombosis in patients with APS.


2015 ◽  
Vol 210 (7) ◽  
pp. 1117-1131 ◽  
Author(s):  
Neil J. Grimsey ◽  
Berenice Aguilar ◽  
Thomas H. Smith ◽  
Phillip Le ◽  
Amanda L. Soohoo ◽  
...  

Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β–activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2–mediated ubiquitination and TAB1–TAB2. TAB1–TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.


2003 ◽  
Vol 23 (21) ◽  
pp. 7732-7741 ◽  
Author(s):  
Yu Shi ◽  
Alexey Kotlyarov ◽  
Kathrin Laaß ◽  
Achim D. Gruber ◽  
Elke Butt ◽  
...  

ABSTRACT MK5 (mitogen-activated protein kinase [MAPK]-activated protein kinase 5), also designated PRAK (p38-regulated and -activated kinase), was deleted from mice by homologous recombination. Although no MK5 full-length protein and kinase activity was detected in the MK5 knockout mice, the animals were viable and fertile and did not display abnormalities in tissue morphology or behavior. In addition, these mice did not show increased resistance to endotoxic shock or decreased lipopolysaccharide-induced cytokine production. Hence, MK5 deletion resulted in a phenotype very different from the complex inflammation-impaired phenotype of mice deficient in MK2, although MK2 and MK5 exhibit evolutional, structural, and apparent extensive functional similarities. To explain this discrepancy, we used wild-type cells and embryonic fibroblasts from both MK2 and MK5 knockout mice as controls to reexamine the mechanism of activation, the interaction with endogenous p38 MAPK, and the substrate specificity of both enzymes. In contrast to MK2, which shows interaction with and chaperoning properties for p38 MAPK and which is activated by extracellular stresses such as arsenite or sorbitol treatment, endogenous MK5 did not show these properties. Furthermore, endogenous MK5 is not able to phosphorylate Hsp27 in vitro and in vivo. We conclude that the differences between the phenotypes of MK5- and MK2-deficient mice result from clearly different functional properties of both enzymes.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


Sign in / Sign up

Export Citation Format

Share Document