scholarly journals Inactivation of LEF1 in T-cell acute lymphoblastic leukemia

Blood ◽  
2010 ◽  
Vol 115 (14) ◽  
pp. 2845-2851 ◽  
Author(s):  
Alejandro Gutierrez ◽  
Takaomi Sanda ◽  
Wenxue Ma ◽  
Jianhua Zhang ◽  
Ruta Grebliunaite ◽  
...  

Abstract To further unravel the molecular pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL), we performed high-resolution array comparative genomic hybridization on diagnostic specimens from 47 children with T-ALL and identified monoallelic or biallelic LEF1 microdeletions in 11% (5 of 47) of these primary samples. An additional 7% (3 of 44) of the cases harbored nonsynonymous sequence alterations of LEF1, 2 of which produced premature stop codons. Gene expression microarrays showed increased expression of MYC and MYC targets in cases with LEF1 inactivation, as well as differentiation arrest at an early cortical stage of thymocyte development characterized by expression of CD1B, CD1E, and CD8, with absent CD34 expression. LEF1 inactivation was associated with a younger age at the time of T-ALL diagnosis, as well as activating NOTCH1 mutations, biallelic INK4a/ARF deletions, and PTEN loss-of-function mutations or activating mutations of PI3K or AKT genes. These cases generally lacked overexpression of the TAL1, HOX11, HOX11L2, or the HOXA cluster genes, which have been used to define separate molecular pathways leading to T-ALL. Our findings suggest that LEF1 inactivation is an important step in the molecular pathogenesis of T-ALL in a subset of young children.

Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4668-4680 ◽  
Author(s):  
Pieter Van Vlierberghe ◽  
Martine van Grotel ◽  
Joëlle Tchinda ◽  
Charles Lee ◽  
H. Berna Beverloo ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chromosomal abnormalities, some occurring in a mutually exclusive manner that possibly delineate specific T-ALL subgroups. One subgroup, including MLL-rearranged, CALM-AF10 or inv (7)(p15q34) patients, is characterized by elevated expression of HOXA genes. Using a gene expression–based clustering analysis of 67 T-ALL cases with recurrent molecular genetic abnormalities and 25 samples lacking apparent aberrations, we identified 5 new patients with elevated HOXA levels. Using microarray-based comparative genomic hybridization (array-CGH), a cryptic and recurrent deletion, del (9)(q34.11q34.13), was exclusively identified in 3 of these 5 patients. This deletion results in a conserved SET-NUP214 fusion product, which was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter regions of specific HOXA genes, where it interacts with CRM1 and DOT1L, which may transcriptionally activate specific members of the HOXA cluster. Targeted inhibition of SET-NUP214 by siRNA abolished expression of HOXA genes, inhibited proliferation, and induced differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 may contribute to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 470-470
Author(s):  
Ana Rita Fragoso ◽  
Tin Mao ◽  
Song Wang ◽  
Steven Schaffert ◽  
Hyeyoung Min ◽  
...  

Abstract Abstract 470 MiRNA-mediated gene regulation represents a fundamental layer of post-transcriptional control of gene expression with diverse functional roles in normal development and tumorigenesis. Whereas some studies have shown that over-expression of miRNA genes may contribute to cancer development and progression, it is yet to be rigorously tested by the loss-of-function genetic approaches whether miRNA genes are required for cancer development and maintenance in mice. Here we show that mir-181a1/b1 coordinates Notch and pre-TCR signals during normal thymocyte differentiation and plays an essential role in development and onset of T-cell acute lymphoblastic leukemia (T-ALL) induced by some Notch mutations. Using gain-of-function and loss-of-function approaches, we demonstrated that mir-181a1/b1 controls Notch and pre-TCR receptor signals during the early stages of T cell development in the thymus by repressing multiple negative regulators of both pathways, including Nrarp, PTPN-22, SHP2, DUSP5, and DUSP6. These results illustrate that a single miRNA can coordinate multiple signaling pathways by modulating the timing and strength of signaling at different stages. Intriguingly, synergistic signaling between Notch and pre-TCR pathways is necessary for the development of T-ALL, and miR-181 family miRNAs are aberrantly expressed in T-ALL patients. These observations raise the possibility that mir-181a1/b1 might contribute to the onset or maintenance of T-ALL by targeting similar pathways in tumor cells as it does in normal thymic progenitor cells. In support of this notion, we found that loss of mir-181a1/b1 significantly delayed the onset and development of T-ALL induced by intracellular domain of Notch1 (ICN1) and caused a 32% increase in the median survival time from 41 days to 54 days in T-ALL mice. Importantly, we noted that loss of mir-181a1/b1 more efficiently repressed the leukemogeneic potential of cells with lower levels of ICN1 expression, suggesting that mir-181a1/b1 may be more effective in inhibiting T-ALL development induced by a Notch mutant with weaker signal strength. Indeed, we demonstrated that loss of mir-181a1b1 essentially blocked T-ALL development induced by the weaker Notch mutant and dramatically decreased mortality from 60% to 10% in these T-ALL mice. Since human Notch mutations identified in T-ALL patients generally have weaker signaling strength and lower oncogenic potential than that of ICN1, our findings indicate that mir-181a1/b1 may play an essential role in development of normal thymic progenitors and Notch-induced T-ALL and may be targeted to treat T-ALL patients harboring Notch mutations. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Moneeb A. K. Othman ◽  
Martina Rincic ◽  
Joana B. Melo ◽  
Isabel M. Carreira ◽  
Eyad Alhourani ◽  
...  

Acute leukemia often presents with pure chromosomal resolution; thus, aberrations may not be detected by banding cytogenetics. Here, a case of 26-year-old male diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) and a normal karyotype after standard GTG-banding was studied retrospectively in detail by molecular cytogenetic and molecular approaches. Besides fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and high resolution array-comparative genomic hybridization (aCGH) were applied. Thus, cryptic chromosomal aberrations not observed before were detected: three chromosomes were involved in a cytogenetically balanced occurring translocation t(2;9;18)(p23.2;p21.3;q21.33). Besides a translocation t(10;14)(q24;q11) was identified, an aberration known to be common in T-ALL. Due to the three-way translocation deletion of tumor suppressor genes CDKN2A/INK4A/p16, CDKN2B/INK4B/p15, and MTAP/ARF/p14 in 9p21.3 took place. Additionally RB1 in 13q14 was deleted. This patient, considered to have a normal karyotype after low resolution banding cytogenetics, was treated according to general protocol of anticancer therapy (ALL-BFM 95).


Blood ◽  
2011 ◽  
Vol 118 (15) ◽  
pp. 4169-4173 ◽  
Author(s):  
Alejandro Gutierrez ◽  
Alex Kentsis ◽  
Takaomi Sanda ◽  
Linda Holmfeldt ◽  
Shann-Ching Chen ◽  
...  

Abstract The BCL11B transcription factor is required for normal T-cell development, and has recently been implicated in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) induced by TLX overexpression or Atm deficiency. To comprehensively assess the contribution of BCL11B inactivation to human T-ALL, we performed DNA copy number and sequencing analyses of T-ALL diagnostic specimens, revealing monoallelic BCL11B deletions or missense mutations in 9% (n = 10 of 117) of cases. Structural homology modeling revealed that several of the BCL11B mutations disrupted the structure of zinc finger domains required for this transcription factor to bind DNA. BCL11B haploinsufficiency occurred across each of the major molecular subtypes of T-ALL, including early T-cell precursor, HOXA-positive, LEF1-inactivated, and TAL1-positive subtypes, which have differentiation arrest at diverse stages of thymocyte development. Our findings provide compelling evidence that BCL11B is a haploinsufficient tumor suppressor that collaborates with all major T-ALL oncogenic lesions in human thymocyte transformation.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1118
Author(s):  
Valentina Bardelli ◽  
Silvia Arniani ◽  
Valentina Pierini ◽  
Danika Di Giacomo ◽  
Tiziana Pierini ◽  
...  

T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10–15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 474-478 ◽  
Author(s):  
LM Weiss ◽  
JM Bindl ◽  
VJ Picozzi ◽  
MP Link ◽  
RA Warnke

A series of 26 lymphoblastic lymphomas (LLs) and 13 T cell acute lymphoblastic leukemias (ALLs) were investigated using a battery of monoclonal antibodies applied to tissue frozen sections. Twenty-one of the LLs were of T lineage. All but one of the T cell LLs were of immature thymic phenotype, mostly corresponding to stage II cortical thymocyte development. The T cell LLs expressed Leu-1 in 100%, Leu-4 and Leu-9 in 95%, and Leu-5 in 85% of the cases. The high percentage of Leu-4 expression in this series is probably due to detection of cytoplasmic antigen with our methods. One LL was of pre-B or B cell and two cases were of common ALL phenotype. Two cases were of undefined phenotype, expressing markers of both B and T cell differentiation. Pediatric cases showed a greater tendency toward T cell phenotype than did adult cases. The cases of T cell ALL were immunophenotypically similar to the cases of T cell LL but showed a tendency toward a more immature phenotype.


2018 ◽  
Vol 215 (12) ◽  
pp. 3094-3114 ◽  
Author(s):  
Ingrid M. Ariës ◽  
Kimberly Bodaar ◽  
Salmaan A. Karim ◽  
Triona Ni Chonghaile ◽  
Laura Hinze ◽  
...  

The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. Here, we report that mitochondrial apoptosis resistance in T cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2). In T-ALL clinical specimens, loss-of-function mutations of PRC2 core components (EZH2, EED, or SUZ12) were associated with mitochondrial apoptosis resistance. In T-ALL cells, PRC2 depletion induced resistance to apoptosis induction by multiple chemotherapeutics with distinct mechanisms of action. PRC2 loss induced apoptosis resistance via transcriptional up-regulation of the LIM domain transcription factor CRIP2 and downstream up-regulation of the mitochondrial chaperone TRAP1. These findings demonstrate the importance of mitochondrial apoptotic priming as a prognostic factor in T-ALL and implicate mitochondrial chaperone function as a molecular determinant of chemotherapy response.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254184
Author(s):  
Claire Catherinet ◽  
Diana Passaro ◽  
Stéphanie Gachet ◽  
Hind Medyouf ◽  
Anne Reynaud ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy with few available targeted therapies. We previously reported that the phosphatase calcineurin (Cn) is required for LIC (leukemia Initiating Capacity) potential of T-ALL pointing to Cn as an interesting therapeutic target. Calcineurin inhibitors have however unwanted side effect. NFAT transcription factors play crucial roles downstream of calcineurin during thymocyte development, T cell differentiation, activation and anergy. Here we elucidate NFAT functional relevance in T-ALL. Using murine T-ALL models in which Nfat genes can be inactivated either singly or in combination, we show that NFATs are required for T-ALL LIC potential and essential to survival, proliferation and migration of T-ALL cells. We also demonstrate that Nfat genes are functionally redundant in T-ALL and identified a node of genes commonly deregulated upon Cn or NFAT inactivation, which may serve as future candidate targets for T-ALL.


2020 ◽  
Author(s):  
Claire Catherinet ◽  
Diana Passaro ◽  
Stéphanie Gachet ◽  
Hind Medyouf ◽  
Anne Reynaud ◽  
...  

ABSTRACTT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy with few available targeted therapies. We previously reported that the phosphatase calcineurin (Cn) is required for LIC (leukemia Initiating Capacity) potential of T-ALL pointing to Cn as an interesting therapeutic target. Calcineurin inhibitors have however unwanted side effect. NFAT transcription factors play crucial roles downstream of calcineurin during thymocyte development, T cell differentiation, activation and anergy. Here we elucidate NFAT functional relevance in T-ALL. Using murine T-ALL models in which Nfat genes can be inactivated either singly or in combination, we show that NFATs are required for T-ALL LIC potential and essential to survival, proliferation and migration of T-ALL cells. We also demonstrate that Nfat genes are functionally redundant in T-ALL and identified a node of genes commonly deregulated upon Cn or NFAT inactivation, which may serve as future candidate targets for T-ALL.


Sign in / Sign up

Export Citation Format

Share Document