scholarly journals Osteoclasts are important for bone angiogenesis

Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Frank C. Cackowski ◽  
Judith L. Anderson ◽  
Kenneth D. Patrene ◽  
Rushir J. Choksi ◽  
Steven D. Shapiro ◽  
...  

Abstract Increased osteoclastogenesis and angiogenesis occur in physiologic and pathologic conditions. However, it is unclear if or how these processes are linked. To test the hypothesis that osteoclasts stimulate angiogenesis, we modulated osteoclast formation in fetal mouse metatarsal explants or in adult mice and determined the effect on angiogenesis. Suppression of osteoclast formation with osteoprotegerin dose-dependently inhibited angiogenesis and osteoclastogenesis in metatarsal explants. Conversely, treatment with parathyroid hormone related protein (PTHrP) increased explant angiogenesis, which was completely blocked by osteoprotegerin. Further, treatment of mice with receptor activator of nuclear factor-κB ligand (RANKL) or PTHrP in vivo increased calvarial vessel density and osteoclast number. We next determined whether matrix metalloproteinase-9 (MMP-9), an angiogenic factor predominantly produced by osteoclasts in bone, was important for osteoclast-stimulated angiogenesis. The pro-angiogenic effects of PTHrP or RANKL were absent in metatarsal explants or calvaria in vivo, respectively, from Mmp9−/− mice, demonstrating the importance of MMP-9 for osteoclast-stimulated angiogenesis. Lack of MMP-9 decreased osteoclast numbers and abrogated angiogenesis in response to PTHrP or RANKL in explants and in vivo but did not decrease osteoclast differentiation in vitro. Thus, MMP-9 modulates osteoclast-stimulated angiogenesis primarily by affecting osteoclasts, most probably by previously reported migratory effects on osteoclasts. These results clearly demonstrate that osteoclasts stimulate angiogenesis in vivo through MMP-9.

2019 ◽  
Vol 20 (16) ◽  
pp. 4038 ◽  
Author(s):  
Yeojin Kim ◽  
Jinman Kim ◽  
Hyerim Lee ◽  
Woo-Ri Shin ◽  
Sheunghun Lee ◽  
...  

Osteoporosis is a common disorder of bone remodeling, caused by the imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Recently, we reported that matrix metalloproteinase-9 (MMP-9)-dependent histone H3 proteolysis is a key event for proficient osteoclast formation. Although it has been reported that several MMP-9 inhibitors, such as tetracycline and its derivatives, show an inhibitory effect on osteoclastogenesis, the molecular mechanisms for this are not fully understood. Here we show that tetracycline analogs, especially tigecycline and minocycline, inhibit osteoclast formation by blocking MMP-9-mediated histone H3 tail cleavage. Our molecular docking approach found that tigecycline and minocycline are the most potent inhibitors of MMP-9. We also observed that both inhibitors significantly inhibited H3 tail cleavage by MMP-9 in vitro. These compounds inhibited receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast formation by blocking the NFATc1 signaling pathway. Furthermore, MMP-9-mediated H3 tail cleavage during osteoclast differentiation was selectively blocked by these compounds. Treatment with both tigecycline and minocycline rescued the osteoporotic phenotype induced by prednisolone in a zebrafish osteoporosis model. Our findings demonstrate that the tetracycline analogs suppress osteoclastogenesis via MMP-9-mediated H3 tail cleavage, and suggest that MMP-9 inhibition could offer a new strategy for the treatment of glucocorticoid-induced osteoporosis.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1392 ◽  
Author(s):  
Hye Jung Ihn ◽  
Ju Ang Kim ◽  
Soomin Lim ◽  
Sang-Hyeon Nam ◽  
So Hyeon Hwang ◽  
...  

There is growing interest in bioactive substances from marine organisms for their potential use against diverse human diseases. Osteoporosis is a skeletal disorder associated with bone loss primarily occurring through enhanced osteoclast differentiation and resorption. Recently, we reported the anti-osteoclastogenic activity of fermented Pacific oyster (Crassostrea gigas) extract (FO) in vitro. The present study focused on investigating the anti-osteoporotic efficacy of FO in bone loss prevention in an experimental animal model of osteoporosis and elucidating the mechanism underlying its effects. Oral administration of FO significantly decreased ovariectomy-induced osteoclast formation and prevented bone loss, with reduced serum levels of bone turnover biomarkers including osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus (CTX). FO significantly suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow-derived macrophages (BMMs) into osteoclasts and attenuated the induction of osteoclast-specific genes required for osteoclastogenesis and bone resorption. Furthermore, FO inhibited RANKL-mediated IκBα and p65 phosphorylation in BMMs. Taken together, these results demonstrate that FO effectively suppresses osteoclastogenesis in vivo and in vitro, and that FO can be considered as a potential therapeutic option for the treatment of osteoporosis and osteoclast-mediated skeletal diseases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yanhui Tan ◽  
Minhong Ke ◽  
Zhichao Li ◽  
Yan Chen ◽  
Jiehuang Zheng ◽  
...  

It is a viable strategy to inhibit osteoclast differentiation for the treatment of osteolytic diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastases. Here we assessed the effects of insulicolide A, a natural nitrobenzoyl sesquiterpenoid derived from marine fungus, on receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis in vitro and its protective effects on LPS-induced osteolysis mice model in vivo. The results demonstrated that insulicolide A inhibited osteoclastogenesis from 1 μM in vitro. Insulicolide A could prevent c-Fos and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) nuclear translocation and attenuate the expression levels of osteoclast-related genes and DC-STAMP during RANKL-stimulated osteoclastogenesis but have no effects on NF-κB and MAPKs. Insulicolide A can also protect the mice from LPS-induced osteolysis. Our research provides the first evidence that insulicolide A may inhibit osteoclastogenesis both in vitro and in vivo, and indicates that it may have potential for the treatment of osteoclast-related diseases.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4335-4343 ◽  
Author(s):  
Takeshi Miyamoto ◽  
Fumio Arai ◽  
Osamu Ohneda ◽  
Katsumasa Takagi ◽  
Dirk M. Anderson ◽  
...  

Abstract Identification of receptor activator of nuclear factor-κB (RANK) and RANK-ligand (RANKL) has provided new insights into the osteoclast differentiation pathway. Osteoclast precursor cells were isolated using monoclonal antibodies against c-Fms and RANK, and the effect of adherence on the in vitro differentiation and proliferation of these cells was examined in 2 different types of stromal-cell–free culture systems: a semisolid culture medium (a nonadherent system) and a liquid culture medium (an adherent system). Osteoclast precursor cells were not able to differentiate into mature osteoclasts efficiently in the semisolid culture system. Trimerized RANKL enhanced osteoclast differentiation in semisolid cultures, but not to the extent seen when cells were allowed to adhere to plastic. Initial precursor cells were capable of differentiating into macrophages or osteoclasts. Once these cells were transferred to adherent conditions, striking differentiation was induced. Multinuclear cells were observed even after they had displayed phagocytic activity, which suggests that cell adhesion plays an important role in the differentiation of osteoclast precursor cells. Integrins, especially the arginine-glycine-aspartic acid (RGD)–recognizing integrins αv and β3, were needed for osteoclast-committed precursor cells to proliferate in order to form multinuclear osteoclasts, and the increase in cell density affected the formation of multinuclear cells. A model of osteoclast differentiation with 2 stages of precursor development is proposed: (1) a first stage, in which precursor cells are bipotential and capable of anchorage-independent growth, and (2) a second stage, in which the further proliferation and differentiation of osteoclast-committed precursor cells is anchorage-dependent.


2019 ◽  
Vol 3 (4) ◽  
pp. 541-551 ◽  
Author(s):  
Muhammad Baghdadi ◽  
Kozo Ishikawa ◽  
Sayaka Nakanishi ◽  
Tomoki Murata ◽  
Yui Umeyama ◽  
...  

AbstractMultiple myeloma (MM) is a hematological malignancy that grows in multiple sites of the axial skeleton and causes debilitating osteolytic disease. Interleukin-34 (IL-34) is a newly discovered cytokine that acts as a ligand of colony-stimulating factor-1 (CSF-1) receptor and can replace CSF-1 for osteoclast differentiation. In this study, we identify IL-34 as an osteoclastogenic cytokine that accelerates osteolytic disease in MM. IL-34 was found to be expressed in the murine MM cell line MOPC315.BM, and the expression of IL-34 was enhanced by stimulation with proinflammatory cytokines or by bone marrow (BM) stromal cells. MM-cell–derived IL-34 promoted osteoclast formation from mouse BM cells in vitro. Targeting Il34 by specific small interfering RNA impaired osteoclast formation in vitro and attenuated osteolytic disease in vivo. In BM aspirates from MM patients, the expression levels of IL-34 in CD138+ populations vary among patients from high to weak to absent. MM cell–derived IL-34 promoted osteoclast formation from human CD14+ monocytes, which was reduced by a neutralizing antibody against IL-34. Taken together, this study describes for the first time the expression of IL-34 in MM cells, indicating that it may enhance osteolysis and suggesting IL-34 as a potential therapeutic target to control pathological osteoclastogenesis in MM patients.


Sign in / Sign up

Export Citation Format

Share Document